Intensive Care Medicine

, Volume 42, Issue 3, pp 418–421 | Cite as

What’s new with biomarker-driven clinical strategy in sepsis and circulatory failure?

  • Armand Mekontso DessapEmail author
  • Lorraine B. Ware
  • Lila Bouadma
What's New in Intensive Care


Biomarkers are increasingly used in modern medicine. Troponin monitoring for acute coronary syndrome is a good example of widespread biomarker-driven clinical strategy. However, in intensive care unit (ICU) patients, the cardiac ischemic origin and clinical implications of elevated troponin are unclear, although this biomarker may be of help in identifying septic patients with sepsis-induced myocardial dysfunction and/or a risk of death [1]. Only a few biomarkers have proved useful to drive clinical strategies in acutely ill patients. We will examine the main recent findings in this era in ICU patients with sepsis or circulatory failure.


Sepsis biomarkers have three main purposes in ICU patients. First, they can be used to estimate the likelihood of an infection in order to help physicians decide whether or not to initiate antimicrobial treatment and possibly avoid unnecessary antibiotic use. While there are numerous candidate biomarkers suggested for this purpose,...


Intensive Care Unit Patient Circulatory Failure Lactate Clearance Central Venous Oxygen Saturation Pancreatic Stone Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.


  1. 1.
    Bessiere F, Khenifer S, Dubourg J, Durieu I, Lega JC (2013) Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med 39:1181–1189PubMedGoogle Scholar
  2. 2.
    Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY (2006) Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 34:1996–2003PubMedGoogle Scholar
  3. 3.
    Heyland DK, Johnson AP, Reynolds SC, Muscedere J (2011) Procalcitonin for reduced antibiotic exposure in the critical care setting: a systematic review and an economic evaluation. Crit Care Med 39:1792–1799PubMedGoogle Scholar
  4. 4.
    Shehabi Y, Sterba M, Garrett PM, Rachakonda KS, Stephens D, Harrigan P, Walker A, Bailey MJ, Johnson B, Millis D, Ding G, Peake S, Wong H, Thomas J, Smith K, Forbes L, Hardie M, Micallef S, Fraser JF (2014) Procalcitonin algorithm in critically ill adults with undifferentiated infection or suspected sepsis. A randomized controlled trial. Am J Respir Crit Care Med 190:1102–1110PubMedGoogle Scholar
  5. 5.
    Jensen JU, Hein L, Lundgren B, Bestle MH, Mohr TT, Andersen MH, Thornberg KJ, Loken J, Steensen M, Fox Z, Tousi H, Soe-Jensen P, Lauritsen AO, Strange D, Petersen PL, Reiter N, Hestad S, Thormar K, Fjeldborg P, Larsen KM, Drenck NE, Ostergaard C, Kjaer J, Grarup J, Lundgren JD (2011) Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med 39:2048–2058PubMedGoogle Scholar
  6. 6.
    Schuetz P, Balk R, Briel M, Kutz A, Christ-Crain M, Stolz D, Bouadma L, Wolff M, Kristoffersen KB, Wei L, Burkhardt O, Welte T, Schroeder S, Nobre V, Tamm M, Bhatnagar N, Bucher HC, Luyt CE, Chastre J, Tubach F, Mueller B, Lacey MJ, Ohsfeldt RL, Scheibling CM, Schneider JE (2015) Economic evaluation of procalcitonin-guided antibiotic therapy in acute respiratory infections: a US health system perspective. Clin Chem Lab Med 53:583–592PubMedGoogle Scholar
  7. 7.
    Suberviola B, Castellanos-Ortega A, Ruiz Ruiz A, Lopez-Hoyos M, Santibanez M (2013) Hospital mortality prognostication in sepsis using the new biomarkers suPAR and proADM in a single determination on ICU admission. Intensive Care Med 39:1945–1952PubMedGoogle Scholar
  8. 8.
    Gibot S, Bene MC, Noel R, Massin F, Guy J, Cravoisy A, Barraud D, De Carvalho Bittencourt M, Quenot JP, Bollaert PE, Faure G, Charles PE (2012) Combination biomarkers to diagnose sepsis in the critically ill patient. Am J Respir Crit Care Med 186:65–71PubMedGoogle Scholar
  9. 9.
    Casserly B, Phillips GS, Schorr C, Dellinger RP, Townsend SR, Osborn TM, Reinhart K, Selvakumar N, Levy MM (2015) Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care Med 43:567–573PubMedGoogle Scholar
  10. 10.
    Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, Tomlanovich MC (2004) Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 32:1637–1642PubMedGoogle Scholar
  11. 11.
    Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, Willemsen SP, Bakker J (2010) Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 182:752–761PubMedGoogle Scholar
  12. 12.
    Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA (2010) Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA 303:739–746PubMedPubMedCentralGoogle Scholar
  13. 13.
    van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC (2013) Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med 39:1034–1039PubMedGoogle Scholar
  14. 14.
    Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, Teboul JL (2002) Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 28:272–277PubMedGoogle Scholar
  15. 15.
    Ospina-Tascon GA, Umana M, Bermudez W, Bautista-Rincon DF, Hernandez G, Bruhn A, Granados M, Salazar B, Arango-Davila C, De Backer D (2015) Combination of arterial lactate levels and venous-arterial CO to arterial-venous O content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med 41:796–805PubMedPubMedCentralGoogle Scholar
  16. 16.
    De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL (2010) Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 36:1813–1825PubMedGoogle Scholar
  17. 17.
    Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815PubMedPubMedCentralGoogle Scholar
  18. 18.
    Mickiewicz B, Duggan GE, Winston BW, Doig C, Kubes P, Vogel HJ (2014) Metabolic profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach for septic shock. Crit Care Med 42:1140–1149PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Armand Mekontso Dessap
    • 1
    • 2
    Email author
  • Lorraine B. Ware
    • 3
  • Lila Bouadma
    • 4
    • 5
    • 6
  1. 1.Assistance Publique-Hôpitaux de Paris, DHU A-TVB, Service de Réanimation MédicaleHôpitaux Universitaires Henri MondorCréteil CedexFrance
  2. 2.Faculté de Médecine de Créteil, IMRB, Groupe de Recherche Clinique CARMASUniversité Paris Est CréteilCréteilFrance
  3. 3.Division of Allergy, Pulmonary, and Critical Care Medicine, T1218 Medical Center North Department of MedicineVanderbilt University School of MedicineNashvilleUSA
  4. 4.Assistance Publique-Hôpitaux de Paris, Réanimation Médicale et des Maladies Infectieuses, Hôpital Bichat-Claude-BernardHôpitaux Universitaires Paris Nord-Val de Seine, ParisParisFrance
  5. 5.INSERM, IAME Team 5 DeScID : Decision Science in Infectious Diseases, Control and Care, UMR 1137ParisFrance
  6. 6.University Paris DiderotSorbonne Paris CitéParisFrance

Personalised recommendations