Skip to main content

Advertisement

Log in

A quantitative computed tomography assessment of brain weight, volume, and specific gravity in severe head trauma

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Background

Computed tomography DICOM images analysis allows a quantitative measurement of organ weight, volume and specific gravity in humans.

Methods

The brain weight, volume and specific gravity of 15 traumatic brain-injury patients (3±2 days after trauma) were computed using a specially designed software (BrainView). Data were compared with those obtained from 15 healthy subjects paired for age and overall intracranial volume.

Results

Hemisphere weight were 91 g higher in patients than in controls (1167±101 vs 1076±112 g; p<0.05). Specific gravity of hemispheres (1.0367±0.0017 vs 1.0335±0.0012 g/ml; p<0.001), brainstem (1.0302±0.0016 vs 1.0277±0.0015 g/ml; p<0.001) and cerebellum (1.0396±0.0020 vs 1.0375±0.0015 g/ml; p<0.05) was significantly higher in traumatic brain injury (TBI) patients than in controls (all p<0.0001 without interaction). This increase in specific gravity was evenly distributed between the hemispheres, the brainstem and the cerebellum, and the grey and white matter. It was more pronounced in the rostral than in the caudal areas of the hemispheres. It was independent of the volume of brain contusion, of the mechanism of head injury, of natremia and of initial Glasgow coma score.

Conclusion

Human TBI patients present a diffuse increase in specific gravity. This observation is in sharp opposition with the data derived from the experimental literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Phelps ME, Gado MH, Hoffman EJ (1975) Correlation of effective atomic number and electron density with attenuation coefficients measured with polychromatic X-rays. Radiology 117:585–588

    CAS  PubMed  Google Scholar 

  2. Mull RT (1984) Mass estimates by computed tomography: physical density from CT numbers. Am J Radiol 143:1101–1104

    CAS  Google Scholar 

  3. Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med 26:1215–1227

    Article  CAS  PubMed  Google Scholar 

  4. Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 26:857–869

    Article  CAS  PubMed  Google Scholar 

  5. Rouby JJ, Puybasset L, Cluzel P, Richecoeur J, Lu Q and Grenier P (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med 26:1046–1056

    Article  CAS  PubMed  Google Scholar 

  6. Vieira SR, Puybasset L, Richecoeur J, Lu Q, Cluzel P, Gusman PB, Coriat P, Rouby JJ (1998) A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med 158:1571–1577

    CAS  PubMed  Google Scholar 

  7. Vieira SR, Puybasset L, Lu Q, Richecoeur J, Cluzel P, Coriat P and Rouby JJ (1999) A scanographic assessment of pulmonary morphology in acute lung injury. Significance of the lower inflection point detected on the lung pressure-volume curve. Am J Respir Crit Care Med 159:1612–1623

    CAS  PubMed  Google Scholar 

  8. Malbouisson LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Rouby JJ (2001) Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1444–1450

    CAS  PubMed  Google Scholar 

  9. Malbouisson LM, Busch CJ, Puybasset L, Lu Q, Cluzel P, Rouby JJ (2000) Role of the heart in the loss of aeration characterizing lower lobes in acute respiratory distress syndrome. CT Scan ARDS Study Group. Am J Respir Crit Care Med 161:2005–2012

    CAS  PubMed  Google Scholar 

  10. Lu Q, Malbouisson LM, Mourgeon E, Goldstein I, Coriat P, Rouby JJ (2001) Assessment of PEEP-induced reopening of collapsed lung regions in acute lung injury: are one or three CT sections representative of the entire lung? Intensive Care Med 27:1504–1510

    Article  CAS  PubMed  Google Scholar 

  11. Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814

    CAS  PubMed  Google Scholar 

  12. Pelosi P, D’andrea L, Pesenti A, Gattinoni L (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149:8–13

    CAS  PubMed  Google Scholar 

  13. Pelosi P, Crotti S, Brazzi L, Gattinoni L (1996) Computed tomography in adult respiratory distress syndrom: What has it taught us? Eur Respir J 9:1055–1062

    Article  CAS  PubMed  Google Scholar 

  14. Pelosi P, Cereda M, Foti G, Giacommi M, Pesenti A (1995) Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med 152:531–537

    CAS  PubMed  Google Scholar 

  15. Maas AI, Dearden M, Teasdale GM, Braakman R, Cohadon F, Iannotti F, Karimi A, Lapierre F, Murray G, Ohman J, Persson L, Servadei F, Stocchetti N, Unterberg A (1997) EBIC-guidelines for management of severe head injury in adults. European Brain Injury Consortium. Acta Neurochir (Wien) 139:286–294

    Google Scholar 

  16. Malbouisson LM, Preteux F, Puybasset L, Grenier P, Coriat P, Rouby JJ (2001) Validation of a software designed for computed tomographic (CT) measurement of lung water. Intensive Care Med 27:602–608

    Article  CAS  PubMed  Google Scholar 

  17. Unger E, Littlefield J, Gado M (1988) Water content and water structure in CT and MR signal changes: possible influence in detection of early stroke. Am J Neuroradiol 9:687–691

    CAS  PubMed  Google Scholar 

  18. Rieth KG, Fujiwara K, Chiro G di, Klatzo I, Brooks RA, Johnston GS, O’Connor CM, Mitchell LG (1980) Serial measurements of CT attenuation and specific gravity in experimental cerebral edema. Radiology 135:343–348

    CAS  PubMed  Google Scholar 

  19. Torack RM, Alcala H, Gado M, Burton R (1976) Correlative assay of computerized cranial tomography CCT, water content and specific gravity in normal and pathological postmortem brain. J Neuropathol Exp Neurol 35:385–392

    CAS  PubMed  Google Scholar 

  20. Bullock R, Smith R, Favier J, du Trevou M, Blake G (1985) Brain specific gravity and CT scan density measurements after human head injury. J Neurosurg 63:64–68

    CAS  PubMed  Google Scholar 

  21. Takagi H, Shapiro K, Marmarou A, Wisoff H (1981) Microgravimetric analysis of human brain tissue: correlation with computerized tomography scanning. J Neurosurg 54:797–801

    CAS  PubMed  Google Scholar 

  22. Abbott AH, Netherway DJ, Niemann DB, Clark B, Yamamoto M, Cole J, Hanieh A, Moore MH, David DJ (2000) CT-determined intracranial volume for a normal population. J Craniofac Surg 11:211–223

    CAS  PubMed  Google Scholar 

  23. Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, Harwood M, Hinds S, Press GA (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216:672–682

    CAS  PubMed  Google Scholar 

  24. Edland SD, Xu Y, Plevak M, O’Brien P, Tangalos EG, Petersen RC, Jack CR Jr (2002) Total intracranial volume: normative values and lack of association with Alzheimer’s disease. Neurology 59:272–274

    CAS  PubMed  Google Scholar 

  25. Ho KC, Roessmann U, Straumfjord JV, Monroe G (1980) Analysis of brain weight. I. Adult brain weight in relation to sex, race, and age. Arch Pathol Lab Med 104:635–639

    CAS  PubMed  Google Scholar 

  26. Ho KC, Roessmann U, Straumfjord JV, Monroe G (1980) Analysis of brain weight. II. Adult brain weight in relation to body height, weight, and surface area. Arch Pathol Lab Med 104:640–645

    CAS  PubMed  Google Scholar 

  27. Bigler ED, Johnson SC, Blatter DD (1999) Head trauma and intellectual status: relation to quantitative magnetic resonance imaging findings. Appl Neuropsychol 6:217–225

    CAS  PubMed  Google Scholar 

  28. Henry-Feugeas MC, Azouvi P, Fontaine A, Denys P, Bussel B, Maaz F, Samson Y, Schouman-Claeys E (2000) MRI analysis of brain atrophy after severe closed-head injury: relation to clinical status. Brain Inj 14:597–604

    Article  CAS  PubMed  Google Scholar 

  29. Verger K, Junque C, Levin HS, Jurado MA, Perez-Gomez M, Bartres-Faz D, Barrios M, Alvarez A, Bartumeus F, Mercader JM (2001) Correlation of atrophy measures on MRI with neuropsychological sequelae in children and adolescents with traumatic brain injury. Brain Inj 15:211–221

    Article  CAS  PubMed  Google Scholar 

  30. Kita H, Marmarou A (1994) The cause of acute brain swelling after the closed head injury in rats. Acta Neurochir Suppl (Wien) 60:452–455

    Google Scholar 

  31. Marmarou A, Fatouros PP, Barzo P, Portella G, Yoshihara M, Tsuji O, Yamamoto T, Laine F, Signoretti S, Ward JD, Bullock MR, Young HF (2000) Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg 93:183–193

    CAS  Google Scholar 

  32. Kuhl DE, Alavi A, Hoffman EJ, Phelps ME, Zimmerman RA, Obrist WD, Bruce DA, Greenberg JH, Uzzell B (1980) Local cerebral blood volume in head-injured patients. Determination by emission computed tomography of 99mTc-labeled red cells. J Neurosurg 52:309–320

    CAS  PubMed  Google Scholar 

  33. Blacque-Belair A, Mathieu de Fossey B, Fourestier M (1965) Dictionnaire des constantes biologiques et physiques. Paris

  34. Talmor D, Shapira Y, Artru AA, Gurevich B, Merkind V, Katchko L, Reichenthal E (1998) 0.45% saline and 5% dextrose in water, but not 0.9% saline or 5% dextrose in 0.9% saline, worsen brain edema two hours after closed head trauma in rats. Anesth Analg 86:1225–1229

    Article  CAS  PubMed  Google Scholar 

  35. Gardenfors A, Nilsson F, Skagerberg G, Ungerstedt U, Nordstrom CH (2002) Cerebral physiological and biochemical changes during vasogenic brain oedema induced by intrathecal injection of bacterial lipopolysaccharides in piglets. Acta Neurochir (Wien) 144:601–609

    Google Scholar 

  36. Nath F, Galbraith S (1986) The effect of mannitol on cerebral white matter water content. J Neurosurg 65:41–43

    CAS  PubMed  Google Scholar 

  37. Marshall LF, Marshall SB, Klauber MR, Van Berkum Clark M, Eisenberg H, Jane JA, Luerssen TG, Marmarou A, Foulkes MA (1992) The diagnosis of head injury requires a classification based on computed axial tomography. J Neurotrauma 9 [Suppl 1]:S287–S292

    PubMed  Google Scholar 

Download references

Acknowledgements. The authors thank the nurses of the Neuro-Surgical Intensive Care Unit and the technicians of the Department of Neuro-Radiology for their active participation. Financial support from the “Fondation des gueules cassées” (2003-14). This work was presented in part at the SNACC meeting held in San Francisco in October 2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Puybasset.

Additional information

This article refers to the editorial http://dx.doi.org/10.1007/s00134-005-2708-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lescot, T., Bonnet, MP., Zouaoui, A. et al. A quantitative computed tomography assessment of brain weight, volume, and specific gravity in severe head trauma. Intensive Care Med 31, 1042–1050 (2005). https://doi.org/10.1007/s00134-005-2709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-005-2709-y

Keywords

Navigation