Vitamin E-blended versus conventional polyethylene liners in prostheses

Prospective, randomized trial with 3-year follow-up
  • André BuschEmail author
  • Marcus Jäger
  • VITAS group
  • Alexander Wegner
  • Marcel Haversath



Despite continuous technical improvements, polyethylene wear debris induced periprosthetic osteolysis remains the main cause for failure of hip arthroplasty. Progressive oxidation of polyethylene was identified as another risk factor for material failure. To overcome this problem, antioxidants such as vitamin E (alpha-tocopherol) were supplemented by diffusion into the latest generation of polyethylene liners.


The purpose of the present study was to investigate the clinical outcome of patients treated with vitamin E blended highly cross-linked ultra-high molecular weight polyethylene liners (UHMWPE-XE) in comparison with conventional UHMWPE‑X liners by evaluating patient-reported outcome measures (PROM’s) at 3‑year follow-up.


A total of 143 patients were recruited into this prospective, randomized trial in our academic center. Three years after implantation, 101 patients were examined in the outpatient clinic for follow-up. Of these, 51 (50.5%) received UHMWPE-XE and 50 (49.5%) UHMWPE‑X liners. Clinical outcome was evaluated using Harris-Hip-Score (HHS) UCLA-Score and Hip Disability and Osteoarthritis Outcome Score (HOOS).


There was a significant improvement in all PROM’s at one- and three-year follow-up compared to the status before implantation. PROM’s did not differ significantly between the first and third year follow-up. Both liner groups showed an equal clinical outcome.


The present study demonstrates that the supplementation of vitamin E to polyethylene liners is reliable and safe without showing higher complication rates compared with conventional polyethylene liners. The shortterm clinical outcome of vitamin E-blended (UHMWPE‑XE) is equivalent to those of conventional highly cross-linked polyethylene liners.


Biomaterials Antioxidant Patient-related outcome measurement Total hip replacement Prosthesis durability 



Activities of daily living


American Society of Anesthesiologists




Harris hip score


Hip disability and osteoarthritis outcome score


Highly cross-linked polyethylene




Patient-reported outcome measures


Quality of life


Standard deviation


Total hip arthroplasty


University of California Los Angeles


Ultrahigh molecular weight polyethylene


Conventional cross-linked ultrahigh molecular weight polyethylene


Highly cross-linked ultrahigh molecular weight polyethylene

Vitamin-E-vermischte vs. konventionelle Polyethyleninlays in der Prothetik

Prospektive, randomisierte Studie mit 3-Jahres-Follow-up



Trotz der stetigen Verbesserung der Materialeigenschaften bleibt die durch Abriebpartikel von Polyethylen im periprothetischen Gewebe induzierte aseptische Inflammation mit Osteoklastenaktivierung und aseptischer Prothesenlockerung eine der Hauptkomplikationen in der Hüftendoprothetik. Als weitere Gründe für den Materialverschleiß von Polyethylen wurden Oxidationsprozesse identifiziert. Zur Überwindung dieser Problematik, werden seit einigen Jahren hochvernetzte Polyethylen-Inlays hergestellt, die mit dem Antioxidans Tocopherol (Vitamin E) vorbehandelt werden. Das Ziel dieser Studie war es, die klinischen Ergebnisse von Patienten, denen Vitamin E “blended” bzw. konventionelle Polyethylen-Inlays in der Hüftendoprothetik implantiert wurden, anhand von PROM’s (patient related outcome measurements) zu bewerten.


In unserem Zentrum wurden insgesamt 143 Patienten in diese prospektive, randomisierte Studie eingeschlossen. Zur 3‑Jahresnachuntersuchung kamen insgesamt 101 Patienten, von denen 51 ein Vitamin E vermischtes (50,5%) und 50 ein konventionelles (49,5%) Polyethylen-Inlay erhielten. Das klinische Ergebnis wurde anhand von Harris-Hip-Score (HHS) UCLA-Score und Hip Disability und Osteoarthritis Outcome Score (HOOS) bewertet.


Es zeigte eine signifikante Verbesserung von allen PROM’s bei der 1-Jahresnachuntersuchung im Vergleich zum präoperativen Befund in beiden Kohorten. Die Ergebnisse verblieben auf hohem Niveau bei der 3-Jahresnachuntersuchung.


Die vorliegende Studie zeigt, dass der Einsatz von Vitamin E „blended“ Polyethylen-Inlays in der Hüftendoprothetik zuverlässig und sicher ist. Die klinischen Kurzzeitergebnisse sind denen von konventionellen Polyethylen-Inlays gleichwertig.


Biomaterialien Antioxidans Patientenbezogene Ergebnismessung Hüfttotalendoprothese Prothesenhaltbarkeit 



The study is financially supported by B. Braun-Aesculap AG, Tuttlingen, Germany; trial registration: NCT01713062.

Members of the Vitas group

Jäger M (Klinik für Orthopädie, Unfall- und Wiederherstellungschirurgie, St. Marienhospital Mülheim, Contilia Gruppe für die Universität Duisburg-Essen, Germany), Landgraeber S, Serong S (Department of Orthopaedics, University of Saarland, Saarbrücken, Germany), Haversath M, von Wasen A (Department of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Essen, Germany), Windhagen H, Flörkemeier T, Budde S, Kubilay J, Noll Y (Klinik für Orthopädie, Diakovere Annastift, Medizinische Hochschule Hannover, Hannover, Germany), Delank KS, Baghdadi J (Klinik für Orthopädie und Unfallchirurgie, Universität Halle, Halle, Germany), Willburger R (Orthopädie und Unfallchirurgie, Katholisches Klinikum Bochum, Ruhr-Universität Bochum, Bochum, Germany), Dücker M (Klinik für Orthopädie, Marienhaus Klinikum St. Josef, Bendorf, Germany), Wilke A, Hütter F (Orthopädie, Unfall‑, Hand- und Wiederherstellungschirurgie, Elisabeth-Klinik, Bigge-Olsberg, Germany)

Author Contribution

All authors ensured that they had furnished a substantial contribution to the article and that they are in agreement with the form and contents of the manuscript.

Compliance with ethical guidelines

Conflict of interest

A. Busch, M. Haversath, VITAS group, A. Wegner and M. Jäger declare that they have no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. All patients consented to publish personal data in an anonymized form. The study was approved by the local ethics committee (11-4845-BO). The study was registered on (registration number NCT01713062).


  1. 1.
    Clark CR, Heckman JD (2001) Volume versus outcomes in orthopaedic surgery: a proper perspective is paramount. J Bone Joint Surg Am 83-A(11):1619–1621CrossRefGoogle Scholar
  2. 2.
    Gundtoft PH, Overgaard S, Schonheyder HC, Moller JK, Kjaersgaard-Andersen P, Pedersen AB (2015) The “true” incidence of surgically treated deep prosthetic joint infection after 32,896 primary total hip arthroplasties. Acta Orthop 86(3):326–334. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Beaulé PE, Campbell P, Mirra J, Hooper JC, Schmalzried TP (2001) Osteolysis in a cementless, second generation metal-on-metal hip replacement. Clin Orthop Relat Res 386:159–165CrossRefGoogle Scholar
  4. 4.
    Haversath M, Klebingat S, VITAS-Gruppe, Jäger M (2018) Abriebanalyse mit virtuellen CAD-basierten Röntgenaufnahmen in der Endoprothetik. Orthopade 47(10):811–819. CrossRefPubMedGoogle Scholar
  5. 5.
    Benignus C, Morlock M, Beckmann J (2019) Hüftendoprothetik beim jungen Patienten: Gleitpaarungen und Individualendoprothesen. Orthopade 48(4):292–299. CrossRefPubMedGoogle Scholar
  6. 6.
    Tindall A, James KD, Slack R, James C, Shetty AA (2007) Long-term follow-up of a hydroxyapatite ceramic-coated threaded cup: an analysis of survival and fixation at up to 15 years. J Arthroplasty 22(8):1079–1082CrossRefGoogle Scholar
  7. 7.
    Yoon PW, Yoo JJ, Kim Y, Yoo S, Lee S, Kim HJ (2016) The epidemiology and national trends of bearing surface usage in primary total hip Arthroplasty in korea. Clin Orthop Surg 8(1):29–37. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hwang KT, Kim YH, Kim YS, Choi IY (2013) Is second generation metal-on-metal primary total hip arthroplasty with a 28 mm head a worthy option?: a 12- to 18-year follow-up study. J Arthroplasty 28(10):1828–1833CrossRefGoogle Scholar
  9. 9.
    Ha YC, Kim SY, Kim HJ, Yoo JJ, Koo KH (2007) Ceramic liner fracture after cementless alumina-on-alumina total hip arthroplasty. Clin Orthop Relat Res 458:106–110. CrossRefPubMedGoogle Scholar
  10. 10.
    Jäger M, Wild A, Werner A, Munz D, Krauspe R (2002) Fracture analysis of a ceramic liner. Is in hip endoprosthesis replacement of ceramic on ceramic components with only one of the corresponding partners justified? Biomed Tech 47(12):306–309CrossRefGoogle Scholar
  11. 11.
    Cobelli N, Scharf B, Crisi GM, Hardin J, Santambrogio L (2011) Mediators of the inflammatory response to joint replacement devices. Nat Rev Rheumatol 7(10):600–608CrossRefGoogle Scholar
  12. 12.
    Jacobs CA, Christensen CP, Greenwald AS, McKellop H (2007) Clinical performance of highly cross-linked polyethylenes in total hip arthroplasty. J Bone Joint Surg Am 89(12):2779–2786CrossRefGoogle Scholar
  13. 13.
    Puppulin L, Sugano N, Zhu W, Pezzotti G (2014) Structural modifications induced by compressive plastic deformation in single-step and sequentially irradiated UHMWPE for hip joint components. J Mech Behav Biomed Mater 31:86–99CrossRefGoogle Scholar
  14. 14.
    Jäger M, van Wasen A, Warwas S, Landgraeber S, Haversath M, Group V (2014) A multicenter approach evaluating the impact of vitamin e‑blended polyethylene in cementless total hip replacement. Orthop Rev (Pavia) 6(2):5285. CrossRefGoogle Scholar
  15. 15.
    Sayeed SA, Mont MA, Costa CR, Johnson AJ, Naziri Q, Bonutti PM, Delanois RE (2011) Early outcomes of sequentially cross-linked thin polyethylene liners with large diameter femoral heads in total hip arthroplasty. Bull NYU Hosp Jt Dis 69(Suppl 1):S90–S94PubMedGoogle Scholar
  16. 16.
    Oral E, Malhi A, Muratoglu O (2006) Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE. Biomaterials 27:917–925CrossRefGoogle Scholar
  17. 17.
    MacDonald D, Sakona A, Ianuzzi A et al (2011) Do first-generation highly crosslinked polyethylenes oxidize in vivo? Clin Orthop Relat Res 469:2278–2285CrossRefGoogle Scholar
  18. 18.
    Wannomae KK, Christensen SD, Freiberg AA et al (2006) The effect of real-time aging on the oxidation and wear of highly crosslinked UHMWPE acetabular liners. Biomaterials 27:1980–1987CrossRefGoogle Scholar
  19. 19.
    Currier BH, Van Citters DW, Currier JH, Collier JP (2010) In vivo oxidation in remelted highly cross-linked retrievals. J Bone Joint Surg Am 92:2409–2418CrossRefGoogle Scholar
  20. 20.
    Jarrett BT, Cofske J, Rosenberg AE et al (2010) In vivo biological response to vitamin E and vitamin-E-doped polyethylene. J Bone Joint Surg Am 92:2672–2681CrossRefGoogle Scholar
  21. 21.
    Oral E, Muratoglu OK (2011) Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop 35:215–223CrossRefGoogle Scholar
  22. 22.
    Oral E, Wannomae KK, Rowell SL, Muratoglu OK (2006) Migration stability of alphatocopherol in irradiated UHMWPE. Biomaterials 27:2434–2439CrossRefGoogle Scholar
  23. 23.
    Turner A, Okubo Y, Teramura S et al (2014) The antioxidant and non-antioxidant contributions of vitamin E in vitamin E blended ultra-high molecular weight polyethylene for total knee replacement. J Mech Behav Biomed Mater 31:21–30CrossRefGoogle Scholar
  24. 24.
    Wolf C, Krivec T, Blassnig J et al (2002) Examination of the suitability of alpha-tocopherol as a stabilizer for ultra-high molecular weight polyethylene used for articulating surfaces in joint endoprostheses. J Mater Sci Mater Med 13:185–189CrossRefGoogle Scholar
  25. 25.
    Wolf C, Macho C, Lederer K (2006) Accelerated ageing experiments with crosslinked and conventional ultra-high molecular weight polyethylene (UHMW-PE) stabilised with alpha-tocopherol for total joint arthroplasty. J Mater Sci Mater Med 17:1333–1340CrossRefGoogle Scholar
  26. 26.
    Morlock MM, Jäger M (2017) Endoprothetik des älteren Menschen; Biomaterialien: Implantatwahl, Verankerungstechnik. Orthopade 46(1):4–17. CrossRefPubMedGoogle Scholar
  27. 27.
    Oral E, Ghali BW, Rowell SL et al (2010) A surface crosslinked UHMWPE stabilized by vitamin E with low wear and high fatigue strength. Biomaterials 31:7051–7060CrossRefGoogle Scholar
  28. 28.
    Kurtz SM, Dumbleton J, Siskey RS et al (2009) Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation. J Biomed Mater Res A 90:549–563CrossRefGoogle Scholar
  29. 29.
    Grupp TM, Holderied M, Mulliez MA, Streller R, Jäger M, Blömer W, Utzschneider S (2014) Biotribology of a vitamin E‑stabilized polyethylene for hip arthroplasty - Influence of artificial ageing and third-body particles on wear. Acta Biomater 10(7):3068–3078. CrossRefPubMedGoogle Scholar
  30. 30.
    Bracco P, Oral E (2011) Vitamin E‑stabilized UHMWPE for total joint implants: a review. Clin Orthop Relat Res 469:2286–2293CrossRefGoogle Scholar
  31. 31.
    Parth M, Aust N, Lederer K (2002) Studies on the effect of electron beam radiation on the molecular structure of ultra-high molecular weight polyethylene under the influence of alpha-tocopherol with respect to its application in medical implants. J Mater Sci Mater Med 13(10):917–921CrossRefGoogle Scholar
  32. 32.
    Oral E, Greenbaum E, Malhi A, Muratoglu O (2005) Characterization of blends of α‑Tocopherol with UHMWPE. Biomaterials 26:6657–6663CrossRefGoogle Scholar
  33. 33.
    Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51:737–755CrossRefGoogle Scholar
  34. 34.
    Nilsdotter AK, Lohmander LS, Klassbo M, Roos EM (2003) Hip disability and osteoarthritis outcome score (HOOS)--validity and responsiveness in total hip replacement. BMC Musculoskelet Disord 4:10CrossRefGoogle Scholar
  35. 35.
    Rahman WA, Garbuz DS, Masri BA (2013) Total hip arhtroplasty in steroid-induced osteonecrosis: early functional and radiological outcomes. Can J Surg 56:41–46CrossRefGoogle Scholar
  36. 36.
    Amstutz HC, Thomas BJ, Jinnah R et al (1984) Treatment of primary osteoarthritis of the hip. A comparison of total joint and surface replacement arthroplasty. J Bone Joint Surg Am 66:228–241CrossRefGoogle Scholar
  37. 37.
    Canadian Joint Replacement Registry (2008) Hip and knee replacements in Canada. 2008 annual report. Canadian Institute for Health Information c2009, Ottawa – OntarioGoogle Scholar
  38. 38.
    Oral E, Muratoglu OK (2011) Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop 35(2):215–223. CrossRefPubMedGoogle Scholar
  39. 39.
    Hodrick J, Severson E, McAlister D, Dahl B, Hofmann A (2008) Highly crosslinked polyethylene is safe fro use in total knee arthroplasty. Clin Orthop Relat Res 466:2806–2812. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Manning DW, Chiang PP, Martell JM, Galante JO, Harris WH (2005) In vivo comparative wear study of traditional and highly cross-linked polyethylene in total hip arthroplasty. J Arthroplasty 20(7):880–886. CrossRefPubMedGoogle Scholar
  41. 41.
    Sutula LC, Collier JP, Saum KA, Currier BH, Currier JH, Sanford WM, Mayor MB, Wooding RE, Sperling DK, Williams IR, Kasprzak DJ, Surprenant VA (1995) The Otto Aufranc Award. Impact of gamma sterilization on clinical performance of polyethylene in the hip. Clin Orthop Relat Res 319:28–40. CrossRefGoogle Scholar
  42. 42.
    Yamamoto K, Tateiwa T, Takahashi Y (2017) Vitamin E‑stabilized highly crosslinked polyethylenes: The role and effectiveness in total hip arthroplasty. J Orthop Sci 22(3):384–390. CrossRefPubMedGoogle Scholar
  43. 43.
    Nebergall AK, Greene ME, Laursen MB, Nielsen PT, Malchau H, Troelsen A (2017) Vitamin E diffused highly cross-linked polyethylene in total hip arthroplasty at five years: a randomised controlled trial using radiostereometric analysis. Bone Joint J 99-B(5):577–584. CrossRefPubMedGoogle Scholar
  44. 44.
    Salemyr M, Muren O, Ahl T, Bodén H, Chammout G, Stark A, Sköldenberg O (2015) Vitamin‑E diffused highly cross-linked polyethylene liner compared to standard liners in total hip arthroplasty. A randomized, controlled trial. Int Orthop 39(8):1499–1505. CrossRefPubMedGoogle Scholar
  45. 45.
    Wyatt M, Weidner J, Pfluger D, Beck M (2017) The RM Pressfit vitamys: 5‑year Swiss experience of the first 100 cups. Hip Int 27(4):368–372. CrossRefPubMedGoogle Scholar
  46. 46.
    Weiss RJ, Hailer NP, Stark A, Kärrholm J (2012) Survival of uncemented acetabular monoblock cups: evaluation of 210 hips in the Swedish Hip Arthroplasty Register. Acta Orthop 83(3):214–219. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sculco TP (2002) The acetabular component: an elliptical monoblock alternative. J Arthroplasty 17:118–120CrossRefGoogle Scholar
  48. 48.
    Scemama C, Anract P, Dumaine V, Babinet A, Courpied JP, Hamadouche M (2017) Does vitamin E‑blended polyethylene reduce wear in primary total hip arthroplasty: a blinded randomised clinical trial. Int Orthop 41(6):1113–1118. CrossRefPubMedGoogle Scholar
  49. 49.
    Otto-Lambertz C, Yagdiran A, Wallscheid F, Eysel P, Jung N (2017) Periprosthetic infection in joint replacement. Dtsch Arztebl Int 114(20):347–353. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wetters NG, Murray TG, Moric M, Sporer SM, Paprosky WG, Della Valle CJ (2013) Risk factors for dislocation after revision total hip arthroplasty. Clin Orthop Relat Res 471:410–416CrossRefGoogle Scholar
  51. 51.
    Karachalios T, Komnos G, Koutalos A (2018) Total hip arthroplasty: Survival and modes of failure. EFORT Open Rev 3(5):232–239. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bozic KJ, Kurtz SM, Lau E, Ong K, Vail TP, Berry DJ (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am 91(1):128–133CrossRefGoogle Scholar
  53. 53.
    Ullmark G (2016) The unstable total hip arthroplasty. Efort Open Rev 1(4):83–88. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • André Busch
    • 1
    Email author
  • Marcus Jäger
    • 1
  • VITAS group
  • Alexander Wegner
    • 1
  • Marcel Haversath
    • 1
  1. 1.Department of Orthopaedics and Trauma SurgeryUniversity of Duisburg-EssenEssenGermany

Personalised recommendations