Advertisement

Der Orthopäde

, Volume 49, Issue 1, pp 39–58 | Cite as

Komplikationen im zeitlichen Verlauf nach einer operativen Wirbelsäulenversorgung

  • W. Pepke
  • C. Wantia
  • H. Almansour
  • T. Bruckner
  • M. Thielen
  • M. AkbarEmail author
Originalien

Zusammenfassung

Hintergrund

Postoperative Komplikationen in der Wirbelsäulenchirurgie sind häufig. Über die Zeitpunkte des jeweiligen Komplikationseintritts im postoperativen Verlauf wurde bisher nur spärlich berichtet. Die Erfassung der Häufigkeitsgipfel postoperativer Komplikationen hat jedoch wesentlichen Einfluss auf die Aufklärung der Patienten sowie die postoperativen Verlaufskontrollen.

Material und Methoden

In dieser monozentrischen retrospektiven Studie wurden die postoperativen Komplikationen von 1179 Patienten, die zwischen 2010 und 2015 mittels Spondylodese operativ versorgt worden waren, erfasst. Die Patienten wurden 3, 6, 12, 24 und 36 Monate postoperativ nachuntersucht. Gemäß der bestehenden Lokalisation und Pathologieart wurden die Patienten in Gruppen eingeteilt und die erfassten Komplikationen statistisch analysiert.

Ergebnisse

Aufgrund einer Komplikation wurde bei 16,9 % der 1179 Patienten eine Revision vorgenommen. Die meisten Komplikationen traten binnen der ersten 3 Monate auf (72,9 %). Der häufigste Grund für diese Revision war eine tiefe Wundinfektion (42,7 %). Die meisten Infektionen entwickelten die Patienten innerhalb der ersten 3 Monate nach der Operation (91,8 % aller Infektionen), sodass diese als Frühinfektionen definiert werden können. Der Häufigkeitsgipfel des Materialversagens zeigte sich im 2. postoperativen Jahr mit 46 % aller erfasster Materialversagen (2,5 % der Gesamtkomplikationen).

Diskussion

Der Häufigkeitsgipfel postoperativer Komplikationen nach Spondylodese tritt bereits innerhalb der ersten 3 postoperativen Monate ein. Die Wundinfektion stellt die häufigste Komplikation dar. Dennoch ist eine regelmäßige und langfristige postoperative klinisch-radiologische Verlaufskontrolle notwendig, da v. a. das Materialversagen erst innerhalb des 2. postoperativen Jahres einen Häufigkeitsgipfel aufweist.

Schlüsselwörter

Spondylodese Wirbelsäulenchirurgie Wundinfektion Materialversagen Nachsorge 

Abkürzungen

ALIF

„Anterior lumbar interbody fusion“

ASD

Adulte spinale Deformität

BWK

Brustwirbelkörper

BWS

Brustwirbelsäule

HWS

Halswirbelsäule

LWS

Lendenwirbelsäule

PJK

Proximale junktionale Kyphose

PSO

Pedikelsubtraktionsosteotomie

TLIF

„Transforaminal lumbar interbody fusion“

Peak timing for complications after spine surgery

Abstract

Background

Spine surgeries can pose many complications; however, peak timing of post-operative complications in the field of spine surgery is still not sufficiently delineated in the literature as yet. Nevertheless the determination of peak timing of post-operative complications has a significant influence on patient education and post-operative follow-up.

Materials and methods

This single-center study analyzed the medical records of 1179 patients that underwent spinal instrumentation between 2010 and 2015 at 3, 6, 12, 24 and 36 months postoperatively. Complications were analyzed according to their time of onset.

Results

Of the 1179 patients included, 199 (16.9%) underwent revision surgery due to a complication. Peak timing for complications (72.9%) occurred within the first 3 months after surgery. Infection was the most common reason for revision surgery (42.7%) and most infections occurred within the first 3 months after surgery (early infections) (91.8% of infections). Peak timing for material failure occurred in the second post-operative year (46% of all detected prosthesis failures) (2.5% of all complications).

Discussion

Peak timing of post-operative complications post spinal instrumentation occurs as early on as within the first 3 months after surgery and post-operative infections remain the most common post-operative complication overall. Nonetheless, regular and long-term postoperative clinical and radiological follow-up is crucial, since in particular prosthesis failure has its peak timing in the second post-operative year.

Keywords

Spondylodesis Spine surgery Wound infection Prosthesis failure Aftercare 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

W. Pepke, C. Wantia, H. Almansour, T. Bruckner, M. Thielen und M. Akbar geben an, dass kein Interessenkonflikt besteht.

Diese Studie wurde durch die lokale Ethikkommission genehmigt (Ethikantragsnummer S‑471/2015).

Literatur

  1. 1.
    Smith JS, Klineberg E, Lafage V, Shaffrey CI, Schwab F, Lafage R et al (2016) Prospective multicenter assessment of perioperative and minimum 2‑year postoperative complication rates associated with adult spinal deformity surgery. J Neurosurg Spine 25(1):1–14PubMedGoogle Scholar
  2. 2.
    Smith JS, Saulle D, Chen CJ, Lenke LG, Polly DW Jr., Kasliwal MK et al (2012) Rates and causes of mortality associated with spine surgery based on 108,419 procedures: a review of the Scoliosis Research Society Morbidity and Mortality Database. Spine 37(23):1975–1982PubMedGoogle Scholar
  3. 3.
    Daniels AH, Bess S, Line B, Eltorai AEM, Reid DBC, Lafage V et al (2018) Peak timing for complications after adult spinal deformity surgery. World Neurosurg 115:e509–e15PubMedGoogle Scholar
  4. 4.
    Kessler RA, De la Garza Ramos R, Purvis TE, Ahmed AK, Goodwin CR, Sciubba DM et al (2018) Impact of frailty on complications in patients with thoracic and thoracolumbar spinal fracture. Clin Neurol Neurosurg 169:161–165PubMedGoogle Scholar
  5. 5.
    Ghobrial GM, Maulucci CM, Maltenfort M, Dalyai RT, Vaccaro AR, Fehlings MG et al (2014) Operative and nonoperative adverse events in the management of traumatic fractures of the thoracolumbar spine: a systematic review. Neurosurg Focus 37(1):E8PubMedGoogle Scholar
  6. 6.
    Edwards CC 2nd, Bridwell KH, Patel A, Rinella AS, Berra A, Lenke LG (2004) Long adult deformity fusions to L5 and the sacrum. A matched cohort analysis. Spine 29(18):1996–2005PubMedGoogle Scholar
  7. 7.
    Kim HJ, Iyer S, Zebala LP, Kelly MP, Sciubba D, Protopsaltis TS et al (2017) Perioperative neurologic complications in adult spinal deformity surgery: incidence and risk factors in 564 patients. Spine 42(6):420–427PubMedGoogle Scholar
  8. 8.
    Smith JS, Shaffrey CI, Glassman SD, Berven SH, Schwab FJ, Hamill CL et al (2011) Risk-benefit assessment of surgery for adult scoliosis: an analysis based on patient age. Spine 36(10):817–824PubMedGoogle Scholar
  9. 9.
    Glassman SD, Hamill CL, Bridwell KH, Schwab FJ, Dimar JR, Lowe TG (2007) The impact of perioperative complications on clinical outcome in adult deformity surgery. Spine 32(24):2764–2770PubMedGoogle Scholar
  10. 10.
    Dapunt U, Burkle C, Gunther F, Pepke W, Hemmer S, Akbar M (2017) Surgical site infections following instrumented stabilization of the spine. Ther Clin Risk Manag 13:1239–1245PubMedPubMedCentralGoogle Scholar
  11. 11.
    Pull ter Gunne AF, Mohamed AS, Skolasky RL, van Laarhoven CJ, Cohen DB (2010) The presentation, incidence, etiology, and treatment of surgical site infections after spinal surgery. Spine 35(13):1323–1328PubMedGoogle Scholar
  12. 12.
    Sierra-Hoffman M, Jinadatha C, Carpenter JL, Rahm M (2010) Postoperative instrumented spine infections: a retrospective review. South Med J 103(1):25–30PubMedGoogle Scholar
  13. 13.
    Kim J, Burke SM, Qu E, Hwang SW, Riesenburger RI (2015) Application of Intrawound Vancomycin powder during spine surgery in a patient with dialysis-dependent renal failure. Case Rep Surg 2015:321682PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee GI, Bak KH, Chun HJ, Choi KS (2016) Effect of using local Intrawound Vancomycin powder in addition to intravenous antibiotics in posterior lumbar surgery: midterm result in a single-center study. Korean J Spine 13(2):47–52PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hida T, Ando K, Kobayashi K, Ito K, Tsushima M, Matsumoto A et al (2017) Intrawound Vancomycin powder as the prophylaxis of surgical site infection after invasive spine surgery with a high risk of infection. Nagoya J Med Sci 79(4):545–550PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hey HW, Thiam DW, Koh ZS, Thambiah JS, Kumar N, Lau LL et al (2017) Is Intraoperative local vancomycin powder the answer to surgical site infections in spine surgery? Spine 42(4):267–274PubMedGoogle Scholar
  17. 17.
    Theologis AA, Demirkiran G, Callahan M, Pekmezci M, Ames C, Deviren V (2014) Local intrawound vancomycin powder decreases the risk of surgical site infections in complex adult deformity reconstruction: a cost analysis. Spine 39(22):1875–1880PubMedGoogle Scholar
  18. 18.
    Lehner B, Akbar M, Beckmann NA (2018) Infections after reconstructive spinal interventions : how do I deal with them? Orthopade 47(4):288–295PubMedGoogle Scholar
  19. 19.
    O’Toole RV, Joshi M, Carlini AR, Murray CK, Allen LE, Scharfstein DO et al (2017) Local antibiotic therapy to reduce infection after operative treatment of fractures at high risk of infection: a multicenter, randomized, controlled trial (VANCO study). J Orthop Trauma 31(Suppl 1):S18–S24PubMedGoogle Scholar
  20. 20.
    Strom RG, Pacione D, Kalhorn SP, Frempong-Boadu AK (2013) Lumbar laminectomy and fusion with routine local application of vancomycin powder: decreased infection rate in instrumented and non-instrumented cases. Clin Neurol Neurosurg 115(9):1766–1769PubMedGoogle Scholar
  21. 21.
    Mehmanparast H, Petit Y, Mac-Thiong JM (2015) Comparison of pedicle screw loosening mechanisms and the effect on fixation strength. J Biomech Eng 137(12):121003PubMedGoogle Scholar
  22. 22.
    Bredow J, Boese CK, Werner CM, Siewe J, Lohrer L, Zarghooni K et al (2016) Predictive validity of preoperative CT scans and the risk of pedicle screw loosening in spinal surgery. Arch Orthop Trauma Surg 136(8):1063–1067PubMedGoogle Scholar
  23. 23.
    Nagaraja S, Palepu V (2017) Integrated fixation cage loosening under fatigue loading. Int J Spine Surg 11:20PubMedPubMedCentralGoogle Scholar
  24. 24.
    Wimmer C, Gluch H (1998) Aseptic loosening after CD instrumentation in the treatment of scoliosis: a report about eight cases. J Spinal Disord 11(5):440–443PubMedGoogle Scholar
  25. 25.
    Hallab NJ, Cunningham BW, Jacobs JJ (2003) Spinal implant debris-induced osteolysis. Spine 28(20):S125–S138PubMedGoogle Scholar
  26. 26.
    Moojen DJ, van Hellemondt G, Vogely HC, Burger BJ, Walenkamp GH, Tulp NJ et al (2010) Incidence of low-grade infection in aseptic loosening of total hip arthroplasty. Acta Orthop 81(6):667–673PubMedPubMedCentralGoogle Scholar
  27. 27.
    Trampuz A, Zimmerli W (2005) Prosthetic joint infections: update in diagnosis and treatment. Swiss Med Wkly 135(17–18):243–251PubMedGoogle Scholar
  28. 28.
    Shifflett GD, Bjerke-Kroll BT, Nwachukwu BU, Kueper J, Burket J, Sama AA et al (2016) Microbiologic profile of infections in presumed aseptic revision spine surgery. Eur Spine J 25(12):3902–3907PubMedGoogle Scholar
  29. 29.
    Andres-Cano P, Cervan A, Rodriguez-Solera M, Ortega AJ, Rebollo N, Guerado E (2018) Surgical infection after posterolateral lumbar spine arthrodesis: CT analysis of spinal fusion. Orthop Surg 10(2):89–97PubMedPubMedCentralGoogle Scholar
  30. 30.
    Leitner L, Malaj I, Sadoghi P, Amerstorfer F, Glehr M, Vander K et al (2018) Pedicle screw loosening is correlated to chronic subclinical deep implant infection: a retrospective database analysis. Eur Spine J 27(10):2529–2535PubMedGoogle Scholar
  31. 31.
    Onsea J, Depypere M, Govaert G, Kuehl R, Vandendriessche T, Morgenstern M et al (2018) Accuracy of tissue and sonication fluid sampling for the diagnosis of fracture-related infection: a systematic review and critical appraisal. J Bone Jt Infect 3(4):173–181PubMedPubMedCentralGoogle Scholar
  32. 32.
    Steinhausen E (2017) Low-Grade-Infekt. Trauma Berufskrankh 19(3):267–271Google Scholar
  33. 33.
    Pihlajamaki H, Myllynen P, Bostman O (1997) Complications of transpedicular lumbosacral fixation for non-traumatic disorders. J Bone Joint Surg Br 79(2):183–189PubMedGoogle Scholar
  34. 34.
    Akazawa T, Kotani T, Sakuma T, Nemoto T, Minami S (2013) Rod fracture after long construct fusion for spinal deformity: clinical and radiographic risk factors. J Orthop Sci 18(6):926–931PubMedGoogle Scholar
  35. 35.
    Kim YJ, Bridwell KH, Lenke LG, Rhim S, Cheh G (2006) Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine 31(20):2329–2336PubMedGoogle Scholar
  36. 36.
    Broom MJ, Banta JV, Renshaw TS (1989) Spinal fusion augmented by luque-rod segmental instrumentation for neuromuscular scoliosis. J Bone Joint Surg Am 71(1):32–44PubMedGoogle Scholar
  37. 37.
    Dickson JH, Harrington PR, Erwin WD (1978) Results of reduction and stabilization of the severely fractured thoracic and lumbar spine. J Bone Joint Surg Am 60(6):799–805PubMedGoogle Scholar
  38. 38.
    Smith JS, Shaffrey E, Klineberg E, Shaffrey CI, Lafage V, Schwab FJ et al (2014) Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine 21(6):994–1003PubMedGoogle Scholar
  39. 39.
    Smith JS, Shaffrey CI, Ames CP, Demakakos J, Fu KM, Keshavarzi S et al (2012) Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery 71(4):862–867PubMedGoogle Scholar
  40. 40.
    Kelly BP, Shen FH, Schwab JS, Arlet V, Diangelo DJ (2008) Biomechanical testing of a novel four-rod technique for lumbo-pelvic reconstruction. Spine 33(13):E400–E406PubMedGoogle Scholar
  41. 41.
    Scheer JK, Tang JA, Deviren V, Buckley JM, Pekmezci M, McClellan RT et al (2011) Biomechanical analysis of revision strategies for rod fracture in pedicle subtraction osteotomy. Neurosurgery 69(1):164–172 (discussion 72)PubMedGoogle Scholar
  42. 42.
    Dick JC, Bourgeault CA (2001) Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine 26(15):1668–1672PubMedGoogle Scholar
  43. 43.
    Luca A, Lovi A, Galbusera F, Brayda-Bruno M (2014) Revision surgery after PSO failure with rod breakage: a comparison of different techniques. Eur Spine J 23(Suppl 6):610–615PubMedGoogle Scholar
  44. 44.
    Berjano P, Bassani R, Casero G, Sinigaglia A, Cecchinato R, Lamartina C (2013) Failures and revisions in surgery for sagittal imbalance: analysis of factors influencing failure. Eur Spine J 22(Suppl 6):S853–S858PubMedGoogle Scholar
  45. 45.
    Gupta MC, Diebo BG, Protopsaltis TS, Hart RA, Smith JS, Ames CP et al (2016) Bimodal incidence and causes of proximal junctional kyphosis (PJK) in adult spinal deformity (ASD). Spine J 16(10):S327Google Scholar
  46. 46.
    Diebo BG, Shah NV, Stroud SG, Paulino CB, Schwab FJ, Lafage V (2018) Realignment surgery in adult spinal deformity : prevalence and risk factors for proximal junctional kyphosis. Orthopade 47(4):301–309PubMedGoogle Scholar
  47. 47.
    Sokolowski MJ, Garvey TA, Perl J 2nd, Sokolowski MS, Cho W, Mehbod AA et al (2008) Prospective study of postoperative lumbar epidural hematoma: incidence and risk factors. Spine 33(1):108–113PubMedGoogle Scholar
  48. 48.
    Scavarda D, Peruzzi P, Bazin A, Scherpereel B, Gomis P, Graftieaux JP et al (1997) Postoperative spinal extradural hematomas. 14 cases. Neurochirurgie 43(4):220–227PubMedGoogle Scholar
  49. 49.
    Kou J, Fischgrund J, Biddinger A, Herkowitz H (2002) Risk factors for spinal epidural hematoma after spinal surgery. Spine 27(15):1670–1673PubMedGoogle Scholar
  50. 50.
    Lawton MT, Porter RW, Heiserman JE, Jacobowitz R, Sonntag VK, Dickman CA (1995) Surgical management of spinal epidural hematoma: relationship between surgical timing and neurological outcome. J Neurosurg 83(1):1–7PubMedGoogle Scholar
  51. 51.
    Cabana F, Pointillart V, Vital J, Senegas J (2000) Postoperative compressive spinal epidural hematomas. 15 cases and a review of the literature. Rev Chir Orthop Reparatrice Appar Mot 86(4):335–345PubMedGoogle Scholar
  52. 52.
    Soroceanu A, Oren JH, Smith JS, Hostin R, Shaffrey CI, Mundis GM et al (2016) Effect of antifibrinolytic therapy on complications, thromboembolic events, blood product utilization, and fusion in adult spinal deformity surgery. Spine 41(14):E879–E886PubMedGoogle Scholar
  53. 53.
    Raksakietisak M, Sathitkarnmanee B, Srisaen P, Duangrat T, Chinachoti T, Rushatamukayanunt P et al (2015) Two doses of tranexamic acid reduce blood transfusion in complex spine surgery: a prospective randomized study. Spine 40(24):E1257–E1263PubMedGoogle Scholar
  54. 54.
    Verma K, Kohan E, Ames CP, Cruz DL, Deviren V, Berven S et al (2015) A comparison of two different dosing protocols for tranexamic acid in posterior spinal fusion for spinal deformity: a prospective, randomized trial. Int J Spine Surg 9:65PubMedPubMedCentralGoogle Scholar
  55. 55.
    Bullmann V, Granitzka M (2018) Blood management in complex reconstructive spine surgery in ASD patients : do effective measures to reduce bleeding exist? Orthopade 47(4):296–300PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • W. Pepke
    • 1
  • C. Wantia
    • 1
  • H. Almansour
    • 1
  • T. Bruckner
    • 2
  • M. Thielen
    • 1
  • M. Akbar
    • 1
    Email author
  1. 1.Klinik für Orthopädie und Unfallchirurgie, Zentrum für WirbelsäulenchirurgieUniversitätsmedizin HeidelbergHeidelbergDeutschland
  2. 2.Institut für Medizinische Biometrie und InformatikUniversität HeidelbergHeidelbergDeutschland

Personalised recommendations