Advertisement

Der Orthopäde

, Volume 48, Issue 6, pp 477–485 | Cite as

Magnetically controlled growing rods in early onset scoliosis

Indications, timing and treatment
  • B. A. AkbarniaEmail author
  • G. M. Mundis
Leitthema

Abstract

Early onset scoliosis (EOS) remains one of the most challenging aspects of pediatric spine deformity care. The management is often complex, and options are non-operative care with casting or bracing and operative interventions. Surgical treatment includes distraction-based, compression-based and growth-guided techniques. The decision making should focus on preservation of growth, control of curve progression, minimizing complications, but most importantly improvement of the quality of life. Distraction-based techniques are the most commonly used growth-friendly surgery and the magnetically controlled growing rods (MCGR) technique is being utilized increasingly more in the USA over the past 10 years. The MCGR technique was cleared by the Food and Drug Administration (FDA) and available in the USA since 2014. It is indicated for the treatment of progressive EOS in immature patients and those at risk for thoracic insufficiency syndrome (TIS) with the goal of reducing the number of planned open surgical procedures for lengthening and minimizing the complications of more conventional techniques, such as traditional growing rods (TGR). The advent of MCGR has been a game changer for patients with EOS where the distractions are non-invasive and can be performed in outpatient clinics. Long-term follow-up is essential in understanding the outcome of any new treatment method especially in a very young and growing child. Multicenter registries with prospective data collection of pediatric spine deformity patients is imperative for understanding the outcomes of different methods of treatment, minimizing the complications and improving the quality of life of these children.

Keywords

Spine Deformity MAGEC Outpatient Lengthening Quality of life 

Abbreviations

AP

Anteroposterior

BMI

Body mass index

EOS

Early onset scoliosis

ERC

External remote controller

FDA

Food and Drugs Administration

FEA

Finite element analysis

MCGR

Magnetically controlled growing rod

MMD

MAGEC manual distractor

MML

MAGEC magnet locator

MRI

Magnetic resonance imaging

PD

Diaphragmatic pacemaker

PEEK

Poly-ether-ether-ketone

PJK

Proximal junctional kyphosis

PJF

Proximal junctional failure

TGR

Traditional growing rods

TIS

Thoracic insufficiency syndrome

Magnetisch kontrollierte Wachstumsstäbe bei frühkindlicher Skoliose

Indikationen, Timing und Behandlung

Zusammenfassung

Die frühkindliche Skoliose (EOS, „early onset scoliosis“) bleibt eine der größten Herausforderungen in der Versorgung kindlicher Wirbelsäulendeformitäten. Die Behandlung ist häufig komplex, wobei die Optionen von einer nichtoperativen Versorgung mit Gipsverbänden oder Bracing bis hin zu operativen Eingriffen reichen. Die chirurgische Behandlung umfasst distraktionsbasierte, kompressionsbasierte und wachstumsgeführte Techniken. Bei der Entscheidungsfindung sollte das Wachstum berücksichtigt, die Kurvenprogression kontrolliert, die Komplikationen minimiert und vor allem die Lebensqualität verbessert werden. Die Behandlung mit einem magnetisch kontrollierten Wachstumsstab (MCGR) kam in den letzten 10 Jahren in den immer häufiger zum Einsatz. Seit 2014 ist der MCGR von der Food and Drug Administration (FDA) zugelassen und auch in den USA verfügbar. Mit dieser Technik soll die Anzahl der geplanten Verlängerungsoperationen und die Komplikationen traditioneller Wachstumsstäbe (TGR) veringert werden. Die Einführung von MCGR hat für EOS-Patienten große Vorteile, da die Stabdistraktion nichtinvasiv und ambulant durchgeführt werden können. Der Langzeit-Follow-up ist essenziell für das Verständnis einer neuen Behandlungsmethode, insbesondere bei sehr jungen Kindern, die sich noch im Wachstum befinden. Ein Multizenterregister mit einer prospektiven Datensammlung über pädiatrische Patienten mit Wirbelsäulendeformitäten ist unabdingbar, um die Ergebnisse verschiedener Therapieverfahren zu verstehen, die Komplikationen zu minimieren und die Lebensqualität dieser Kinder zu verbessern.

Schlüsselwörter

Wirbelsäulendeformität MAGEC Ambulante Patienten Verlängerung Lebensqualität 

Notes

Compliance with ethical guidelines

Conflict of interest

B.A. Akbarnia acts as consultant and receives royalties from Nuvasive, San Diego, USA. G.M. Mundis acts as consultant, receives royalties and has stocks in Nuvasive.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

References

  1. 1.
    Harrington PR (1963) Scoliosis in the growing spine. Pediatr Clin North Am 10:225–245CrossRefGoogle Scholar
  2. 2.
    Moe JH, Kharrat K, Winter RB, Cummine JL (1984) Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children. Clin Orthop Relat Res 185:35–45Google Scholar
  3. 3.
    Blakemore LC, Scoles PV, Poe-Kochert C, Thompson GH (2001) Submuscular Isola rod with or without limited apical fusion in the management of severe spinal deformities in young children: preliminary report. Spine 26(18):2044–2048CrossRefGoogle Scholar
  4. 4.
    Klemme WR, Denis F, Winter RB, Lonstein JW, Koop SE (1997) Spinal instrumentation without fusion for progressive scoliosis in young children. J Pediatr Orthop 17(6):734–742Google Scholar
  5. 5.
    Akbarnia BA, Breakwell LM, Marks DS, McCarthy RE, Thompson AG, Canale SK et al (2008) Dual growing rod technique followed for three to eleven years until final fusion: the effect of frequency of lengthening. Spine 33(9):984–990CrossRefGoogle Scholar
  6. 6.
    Akbarnia BA, Hosseini P (2016) Magnetically controlled growing rods. Oper Tech Orthop 26(4):234–240CrossRefGoogle Scholar
  7. 7.
    Akbarnia BA, Mundis GM Jr., Salari P, Yaszay B, Pawelek JB (2012) Innovation in growing rod technique: a study of safety and efficacy of a magnetically controlled growing rod in a porcine model. Spine 37(13):1109–1114CrossRefGoogle Scholar
  8. 8.
    Akbarnia BA, Pawelek JB, Cheung KM, Demirkiran G, Elsebaie H, Emans JB et al (2014) Traditional growing rods versus magnetically controlled growing rods for the surgical treatment of early-onset scoliosis: a case-matched 2‑year study. Spine Deform 2(6):493–497CrossRefGoogle Scholar
  9. 9.
    Tan KA, Sewell MD, Clarke AJ, Chan D, Stokes OM, Khan SN et al (2017) Recommendations for lengthening of magnetically controlled growing rods in children with pacemakers. J Pediatr Orthop 37(4):e250–e254CrossRefGoogle Scholar
  10. 10.
    Vivas AC, Hwang SW, Pahys JM (2017) Insertion of magnetically controlled growing rods in a patient with a diaphragmatic pacemaker: case report. Neurosurg Focus 43(4):E14CrossRefGoogle Scholar
  11. 11.
    Budd HR, Stokes OM, Meakin J, Fulford J, Hutton M (2016) Safety and compatibility of magnetic-controlled growing rods and magnetic resonance imaging. Eur Spine J 25(2):578–582CrossRefGoogle Scholar
  12. 12.
    Poon S, Nixon R, Wendolowski S, Gecelter R, Chen YH, DiMauro JP et al (2017) A pilot cadaveric study of temperature and adjacent tissue changes after exposure of magnetic-controlled growing rods to MRI. Eur Spine J 26(6):1618–1623.  https://doi.org/10.1007/s00586-016-4918-1 CrossRefGoogle Scholar
  13. 13.
    Akbarnia BA, Yaszay B, Yazici M, Kabirian N, Blakemore LC, Strauss KR et al (2014) Biomechanical evaluation of 4 different foundation constructs commonly used in growing spine surgery: are rib anchors comparable to spine anchors? Spine Deform 2(6):437–443CrossRefGoogle Scholar
  14. 14.
    Hosseini P, Akbarnia BA, Tran S, Zhang J, Pawelek J, Johnston CE, Shah S, Emans J, Mundis GM, Yaszay B, Samdani A, Sturm PF, CSSG (eds) (2017) Does rod orientation and use of cross connector affect spinal height in magnetically controlled growing rod patients? ICEOS, San DiegoGoogle Scholar
  15. 15.
    Agarwal AAA, Jayaswal A, Goel V (2014) Smaller interval distractions May reduce chances of growth Rod breakage without impending desired spinal growth: a finite element study. Spine Deform 2:430–436CrossRefGoogle Scholar
  16. 16.
    Hosseini P, Pawelek JB, Nguyen S, Thompson GH, Shah SA, Flynn JM et al (2016) Rod fracture and lengthening intervals in traditional growing rods: is there a relationship? Eur Spine J 26(6):1690–1695.  https://doi.org/10.1007/s00586-016-4786-8 CrossRefGoogle Scholar
  17. 17.
    Cheung KKK, Samartzis D, Alanay A, Ferguson J, Nnadi C, Helenius I, Yazici M, Demirkiran G, Akbarnia B (eds) (2015) What are the effects of changing the frequency of distraction in magnetically-controlled growing rod lengthening in early-onset scoliosis? 50th Annual Meeting and Course of the Scoliosis Research Society (SRS), Minneapolis, Minnesota, USAGoogle Scholar
  18. 18.
    Lorenz HM, Braunschweig L, Badwan B, Groenefeld K, Hecker MM, Tsaknakis K et al (2019) High correlation between achieved and expected distraction using magnetically controlled growth rods (MCGR) with rib to pelvis fixation in pediatric spine deformity. J Pediatr Orthop 39(5):e334–e338CrossRefGoogle Scholar
  19. 19.
    Dimeglio A (1993) Growth of spine before age 5 years. Pediatr Orthop B 1993(1):102–107Google Scholar
  20. 20.
    Gilday SE, Schwartz MS, Bylski-Austrow DI, Glos DL, Schultz L, O’Hara S et al (2018) Observed length increases of magnetically controlled growing rods are lower than programmed. J Pediatr Orthop 38(3):e133–e137CrossRefGoogle Scholar
  21. 21.
    Ahmad A, Subramanian T, Panteliadis P, Wilson-Macdonald J, Rothenfluh DA, Nnadi C (2017) Quantifying the ‘law of diminishing returns’ in magnetically controlled growing rods. Bone Joint J 99-b(12):1658–1664CrossRefGoogle Scholar
  22. 22.
    Cheung JP, Bow C, Samartzis D, Ganal-Antonio AK, Cheung KM (2016) Clinical utility of ultrasound to prospectively monitor distraction of magnetically controlled growing rods. Spine J 16(2):204–209CrossRefGoogle Scholar
  23. 23.
    Su AW, Milbrandt TA, Larson AN (2015) Magnetic expansion control system achieves cost savings compared to traditional growth rods: an economic analysis model. Spine 40(23):1851–1856CrossRefGoogle Scholar
  24. 24.
    Doany ME, Olgun ZD, Kinikli GI et al (2018) Health related quality of life in early onset scoliosis patients treated surgically: EOSQ scores in Traditional Growing Rod versus magnetically Controlled Growing rod. Spine 43(2):148–153CrossRefGoogle Scholar
  25. 25.
    Klyce W, Mitchell S, Pawelek J, Skaggs D, Sanders J, Shah S et al (eds) (2019) Characterizing current use in growth-friendly implants for spinal deformity: a 10-year update. American Academy of Orthopaedic Surgeons Annual Meeting, Las Vegas, Nevada, USA, March 12–16, 2019Google Scholar
  26. 26.
    Lebon J, Batailler C, Wargny M, Choufani E, Violas P, Fron D et al (2016) Magnetically controlled growing rod in early onset scoliosis: a 30-case multicenter study. Eur Spine J 26(6):1567–1576.  https://doi.org/10.1007/s00586-016-4929-y CrossRefGoogle Scholar
  27. 27.
    Choi E, Yaszay B, Mundis G, Hosseini P, Pawelek J, Alanay A et al (2017) Implant complications after magnetically controlled growing rods for early onset scoliosis: a multicenter retrospective review. J Pediatr Orthop 37(8):e588–e592CrossRefGoogle Scholar
  28. 28.
    Teoh KH, Winson DM, James SH, Jones A, Howes J, Davies PR et al (2016) Do magnetic growing rods have lower complication rates compared with conventional growing rods? Spine J 16(4 Suppl):40–44CrossRefGoogle Scholar
  29. 29.
    Kabirian N, Akbarnia BA, Pawelek JB, Alam M, Mundis GM Jr., Acacio R et al (2014) Deep surgical site infection following 2344 growing-Rod procedures for early-onset scoliosis: risk factors and clinical consequences. J Bone Joint Surg Am Vol 96(15):e128CrossRefGoogle Scholar
  30. 30.
    Watanabe K, Uno K, Suzuki T, Kawakami N, Tsuji T, Yanagida H et al (2013) Risk factors for complications associated with growing-rod surgery for early-onset scoliosis. Spine 38(8):E464–E468CrossRefGoogle Scholar
  31. 31.
    Yang JS, Sponseller PD, Thompson GH, Akbarnia BA, Emans JB, Yazici M et al (2011) Growing rod fractures: risk factors and opportunities for prevention. Spine 36(20):1639–1644CrossRefGoogle Scholar
  32. 32.
    Bess S, Akbarnia BA, Thompson GH, Sponseller PD, Shah SA, El Sebaie H et al (2010) Complications of growing-rod treatment for early-onset scoliosis: analysis of one hundred and forty patients. J Bone Joint Surg Am Vol 92(15):2533–2543CrossRefGoogle Scholar
  33. 33.
    Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA (2005) Dual growing rod technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine 30(17 Suppl):46–57CrossRefGoogle Scholar
  34. 34.
    Smith JT, Johnston C, Skaggs D, Flynn J, Vitale M (2015) A new classification system to report complications in growing spine surgery: a multicenter consensus study. J Pediatr Orthop 35(8):798–803Google Scholar
  35. 35.
    Kocyigit IA, Olgun ZD, Demirkiran HG, Ayvaz M, Yazici M (2017) Graduation protocol after growing-Rod treatment: removal of implants without new instrumentation is not a realistic approach. J Bone Joint Surg Am Vol 99(18):1554–1564CrossRefGoogle Scholar
  36. 36.
    Shah SA, Karatas AF, Dhawale AA, Dede O, Mundis GM Jr., Holmes L Jr. et al (2014) The effect of serial growing rod lengthening on the sagittal profile and pelvic parameters in early-onset scoliosis. Spine 39(22):E1311–E1317CrossRefGoogle Scholar
  37. 37.
    Schroerlucke SR, Akbarnia BA, Pawelek JB, Salari P, Mundis GM Jr., Yazici M et al (2012) How does thoracic kyphosis affect patient outcomes in growing rod surgery? Spine 37(15):1303–1309CrossRefGoogle Scholar
  38. 38.
    Inaparthy P, Queruz JC, Bhagawati D, Thakar C, Subramanian T, Nnadi C (2016) Incidence of proximal junctional kyphosis with magnetic expansion control rods in early onset scoliosis. Eur Spine J 25(10):3308–3315CrossRefGoogle Scholar
  39. 39.
    Chen Z, Qiu Y, Zhu Z, Li S, Chen X, Sun X (2017) How does Hyperkyphotic early-onset scoliosis respond to growing Rod treatment? J Pediatr Orthop 37(8):e593–e598CrossRefGoogle Scholar
  40. 40.
    Carender CN, Morris WZ, Poe-Kochert C, Thompson GH, Son-Hing JP, Liu RW (2016) Low pelvic incidence is associated with proximal junctional Kyphosis in patients treated with growing rods. Spine 41(9):792–797CrossRefGoogle Scholar
  41. 41.
    El-Hawary R, Sturm P, Cahill P, Samdani A, Vitale M, Gabos P et al (2017) What is the risk of developing proximal junctional Kyphosis during growth friendly treatments for early-onset scoliosis? J Pediatr Orthop 37(2):86–91CrossRefGoogle Scholar
  42. 42.
    Watanabe K, Uno K, Suzuki T, Kawakami N, Tsuji T, Yanagida H et al (2016) Risk factors for proximal junctional Kyphosis associated with dual-rod growing-rod surgery for early-onset scoliosis. Clin Spine Surg 29(8):E428–E433CrossRefGoogle Scholar
  43. 43.
    Bylski-Austrow DI, Glos DL, Bonifas AC, Carvalho MF, Coombs MC, Sturm PF (2016) Flexible growing rods: a biomechanical pilot study of polymer rod constructs in the stability of skeletally immature spines. Scoliosis Spinal Disord 11:39CrossRefGoogle Scholar
  44. 44.
    Cheung JP, Cahill P, Yaszay B, Akbarnia BA, Cheung KM (2015) Special article: update on the magnetically controlled growing rod: tips and pitfalls. J Orthop Surg (hong kong) 23(3):383–390CrossRefGoogle Scholar
  45. 45.
    Cheung JPY, Yiu KKL, Samartzis D, Kwan K, Tan BB, Cheung KMC (2017) Rod lengthening with the magnetically controlled growing rod: factors influencing rod slippage and reduced gains during distractions. Spine (Phila Pa 1976) 43(7):E399–E405.  https://doi.org/10.1097/BRS.0000000000002358 CrossRefGoogle Scholar
  46. 46.
    Kwan KYH, Alanay A, Yazici M, Demirkiran G, Helenius I, Nnadi C et al (2017) Unplanned Reoperations in magnetically controlled growing Rod surgery for early onset scoliosis with a minimum of two-year follow-up. Spine (Phila Pa 1976) 42(24):E1410–E1414.  https://doi.org/10.1097/BRS.0000000000002297 CrossRefGoogle Scholar
  47. 47.
    Jones CS, Stokes OM, Patel SB, Clarke AJ, Hutton M (2015) Actuator pin fracture in magnetically controlled growing rods: two cases. Spine J 16(4):e287–291.  https://doi.org/10.1016/j.spinee.2015.12.020 Google Scholar
  48. 48.
    Joyce TJ, Smith SL, Rushton PRP, Bowey AJ, Gibson MJ (2017) Analysis of explanted magnetically controlled growing rods from seven UK spinal centers. Spine (Phila Pa 1976) 43(1):E16–E22.  https://doi.org/10.1097/BRS.0000000000002221 CrossRefGoogle Scholar
  49. 49.
    Rushton PRP, Siddique I, Crawford R, Birch N, Gibson MJ, Hutton MJ (2017) Magnetically controlled growing rods in the treatment of early-onset scoliosis: a note of caution. Bone Joint J 99-b(6):708–713CrossRefGoogle Scholar
  50. 50.
    Teoh KH, von Ruhland C, Evans SL, James SH, Jones A, Howes J et al (2016) Metallosis following implantation of magnetically controlled growing rods in the treatment of scoliosis: a case series. Bone Joint J 98-b(12):1662–1667CrossRefGoogle Scholar
  51. 51.
    Flynn JM, Tomlinson LA, Pawelek J, Thompson GH, McCarthy R, Akbarnia BA (2013) Growing-rod graduates: lessons learned from ninety-nine patients who completed lengthening. J Bone Joint Surg Am Vol 95(19):1745–1750CrossRefGoogle Scholar
  52. 52.
    Jain A, Sponseller PD, Flynn JM, Shah SA, Thompson GH, Emans JB et al (2016) Avoidance of “final” surgical fusion after growing-Rod treatment for early-onset scoliosis. J Bone Joint Surg Am Vol 98(13):1073–1078CrossRefGoogle Scholar
  53. 53.
    Poe-Kochert C, Shannon C, Pawelek JB, Thompson GH, Hardesty CK, Marks DS et al (2016) Final fusion after growing-Rod treatment for early onset scoliosis: is it really final? J Bone Joint Surg Am Vol 98(22):1913–1917CrossRefGoogle Scholar

Copyright information

© SDSF 2019

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of OrthopedicsScripps Clinic Medical GroupLa JollaUSA

Personalised recommendations