Advertisement

Der Orthopäde

, Volume 48, Issue 6, pp 452–460 | Cite as

Klassifikation des Wachstumspotenzials und resultierende therapeutische Konsequenzen bei Wirbelsäulendeformitäten

Wann ergibt was Sinn?
  • M. Thielen
  • M. AkbarEmail author
Leitthema

Zusammenfassung

Hintergrund

Die adoleszente idiopathische Skoliose ist eine dreidimensionale Achsabweichung der Wirbelsäule mit einer Krümmung in der Frontalebene (Cobb-Winkel) von mehr als 10° ohne nachweisbare Ursache. Während den Phasen des schnellen Wachstums ist eine Verschlechterung der Skoliose im Sinne einer Zunahme des Cobb-Winkels sowie der rotatorischen Komponente wahrscheinlich. Entsprechend ist die Kenntnis der unterschiedlichen Phasen des menschlichen Wachstums für die Behandlung der adoleszenten idiopathischen Skoliose entscheidend.

Klassifikation

Es existieren eine Vielzahl an Klassifikationssystemen, die bei der Abschätzung des Wachstumspotenzials helfen. Im Folgenden sollen zum einen die gängigsten Klassifikationssysteme in Hinblick auf ihre flächendeckende Verfügbarkeit, Lernkurve sowie Genauigkeit in Bezug auf die Anwendung bei adoleszenten idiopathischen Skoliosen genauer betrachtet werden. Zum anderen soll, basierend auf den gemessenen Cobb-Winkeln sowie dem zu erwartenden Wachstumspotenzial, ein Therapiealgorithmus zur Behandlung der adoleszenten idiopathischen Skoliose vorgestellt werden.

Schlüsselwörter

Skoliose Wirbelsäule Spondylodese Korsett Mitwachsendes System 

Abkürzungen

MRT

Magnetresonanztomographie

VBS

„Vertebral body staples“

VBT

„Vertebral body tethering“

Classification of the growth potential and consecutive treatment consequences for spinal deformities

When does what make sense?

Abstract

Background

Adolescent idiopathic scoliosis is a three-dimensional spinal deformity with a curvature in the frontal plane (Cobb angle) of more than 10° without known underlying causes. During the phase of rapid growth, scoliosis deterioration is likely with an increase in the Cobb angle as well as deterioration of the rotational component. Accordingly, knowledge of the different stages of human growth is crucial for the treatment of adolescent idiopathic scoliosis.

Classification

There are a variety of classification systems helping to estimate the growth potential. In the following, on the one hand, the most common classification systems with regard to their availability, learning curve as well as accuracy with respect to the application in adolescent idiopathic scoliosis will be considered in more detail. On the other hand, based on the measured Cobb angles and the expected growth potential, a treatment algorithm for the management of adolescent idiopathic scoliosis will be presented.

Keywords

Scoliosis Spine Spondylodesis Brace Growing system 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Thielen und M. Akbar geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Sanders JO et al (2017) The uniform pattern of growth and skeletal maturation during the human adolescent growth spurt. Sci Rep 7(1):16705CrossRefGoogle Scholar
  2. 2.
    Dimeglio A (2001) Growth in pediatric orthopaedics. J Pediatr Orthop 21(4):549–555Google Scholar
  3. 3.
    DiMeglio A, Canavese F, Charles YP (2011) Growth and adolescent idiopathic scoliosis: When and how much? J Pediatr Orthop 31(1 Suppl):S28–S36CrossRefGoogle Scholar
  4. 4.
    Risser JC (1958) The Iliac apophysis; an invaluable sign in the management of scoliosis. Clin Orthop 11:111–119Google Scholar
  5. 5.
    Wang WW et al (2009) Correlation of Risser sign, radiographs of hand and wrist with the histological grade of iliac crest apophysis in girls with adolescent idiopathic scoliosis. Spine 34(17):1849–1854CrossRefGoogle Scholar
  6. 6.
    Stucker R (2016) The growing spine: Normal and abnormal development. Orthopade 45(6):534–539CrossRefGoogle Scholar
  7. 7.
    Sanders JO et al (2008) Predicting scoliosis progression from skeletal maturity: A simplified classification during adolescence. J Bone Joint Surg Am 90(3):540–553CrossRefGoogle Scholar
  8. 8.
    Minkara A et al (2018) High risk of mismatch between Sanders and Risser staging in adolescent idiopathic scoliosis: Are we guiding treatment using the wrong classification? J Pediatr Orthop.  https://doi.org/10.1097/bpo.0000000000001135 Google Scholar
  9. 9.
    Sanders JO et al (2007) Maturity assessment and curve progression in girls with idiopathic scoliosis. J Bone Joint Surg Am 89(1):64–73CrossRefGoogle Scholar
  10. 10.
    Sauvegrain J, Nahum H, Bronstein H (1962) Study of bone maturation of the elbow. Ann Radiol (Paris) 5:542–550Google Scholar
  11. 11.
    Charles YP et al (2007) Skeletal age assessment from the olecranon for idiopathic scoliosis at Risser grade 0. J Bone Joint Surg Am 89(12):2737–2744CrossRefGoogle Scholar
  12. 12.
    Reynolds E (1950) Radiographic atlas of skeletal development of the hand and wrist. By W. W. Greulich and S. I. Pyle. Stanford University Press, 1950, xiii + 190 pp., ($10.00). Am J Phys Anthropol 8(4):518–520CrossRefGoogle Scholar
  13. 13.
    Greulich WW, Pyle SI (1950) Radiographic atlas of skeletal development of the hand and wrist. The Anatomical Record, Bd. 108(2). Stanford University Press, Stanford, California, S 335–336 (XIII + 190 pages, illustrated. $10.00.)Google Scholar
  14. 14.
    Tanner JM (1975) Assessment of skeletal maturity and prediction of adult height (TW2 method). Academic Press, London, New York, S 99Google Scholar
  15. 15.
    Tanner JM (2001) Assessment of skeletal maturity and prediction of adult height (TW3 method). Saunders, London, New YorkGoogle Scholar
  16. 16.
    Maggio A et al (2016) Skeletal age estimation in a contemporary Western Australian population using the Tanner-Whitehouse method. Forensic Sci Int 263:e1–e8CrossRefGoogle Scholar
  17. 17.
    Dimeglio A, Canavese F (2013) Progression or not progression? How to deal with adolescent idiopathic scoliosis during puberty. J Child Orthop 7(1):43–49CrossRefGoogle Scholar
  18. 18.
    Neal KM, Shirley ED, Kiebzak GM (2018) Maturity indicators and adolescent idiopathic scoliosis: Evaluation of the sanders maturity scale. Spine 43(7):E406–E412CrossRefGoogle Scholar
  19. 19.
    Sitoula P et al (2015) Prediction of curve progression in idiopathic scoliosis: Validation of the sanders skeletal maturity staging system. Spine 40(13):1006–1013CrossRefGoogle Scholar
  20. 20.
    Chumela WC, Roche AF, Thissen D (1989) The FELS method of assessing the skeletal maturity of the hand-wrist. Am J Hum Biol 1(2):175–183CrossRefGoogle Scholar
  21. 21.
    Vignolo M et al (1992) FELS, Greulich-Pyle, and Tanner-Whitehouse bone age assessments in a group of Italian children and adolescents. Am J Hum Biol 4(4):493–500CrossRefGoogle Scholar
  22. 22.
    Knapik DM et al (2018) A quantitative method for the radiological assessment of skeletal maturity using the distal femur. Bone Joint J 100-B(8):1106–1111CrossRefGoogle Scholar
  23. 23.
    Javadinejad S, Sekhavati H, Ghafari R (2015) A comparison of the accuracy of four age estimation methods based on panoramic radiography of developing teeth. J Dent Res Dent Clin Dent Prospects 9(2):72–78CrossRefGoogle Scholar
  24. 24.
    Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45(2):211–227Google Scholar
  25. 25.
    Willner S, Uden A (1982) A prospective prevalence study of scoliosis in Southern Sweden. Acta Orthop Scand 53(2):233–237CrossRefGoogle Scholar
  26. 26.
    Reamy BV, Slakey JB (2001) Adolescent idiopathic scoliosis: Review and current concepts. Am Fam Physician 64(1):111–116Google Scholar
  27. 27.
    Charles YP et al (2006) Progression risk of idiopathic juvenile scoliosis during pubertal growth. Spine 31(17):1933–1942CrossRefGoogle Scholar
  28. 28.
    Escalada F et al (2005) Growth and curve stabilization in girls with adolescent idiopathic scoliosis. Spine 30(4):411–417CrossRefGoogle Scholar
  29. 29.
    Hagglund G, Karlberg J, Willner S (1992) Growth in girls with adolescent idiopathic scoliosis. Spine 17(1):108–111CrossRefGoogle Scholar
  30. 30.
    Sanders JO et al (2006) Correlates of the peak height velocity in girls with idiopathic scoliosis. Spine 31(20):2289–2295CrossRefGoogle Scholar
  31. 31.
    King HA et al (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 65(9):1302–1313CrossRefGoogle Scholar
  32. 32.
    Lenke LG et al (2001) Adolescent idiopathic scoliosis: A new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83(8):1169–1181CrossRefGoogle Scholar
  33. 33.
    Lonstein JE, Carlson JM (1984) The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am 66(7):1061–1071CrossRefGoogle Scholar
  34. 34.
    Robinson CM, McMaster MJ (1996) Juvenile idiopathic scoliosis. Curve patterns and prognosis in one hundred and nine patients. J Bone Joint Surg Am 78(8):1140–1148CrossRefGoogle Scholar
  35. 35.
    James JI (1954) Idiopathic scoliosis; the prognosis, diagnosis, and operative indications related to curve patterns and the age at onset. J Bone Joint Surg Br 36(1):36–49CrossRefGoogle Scholar
  36. 36.
    Weiss HR, Weiss G, Petermann F (2003) Incidence of curvature progression in idiopathic scoliosis patients treated with scoliosis in-patient rehabilitation (SIR): An age- and sex-matched controlled study. Pediatr Rehabil 6(1):23–30CrossRefGoogle Scholar
  37. 37.
    Ridderbusch K et al (2018) Strategies for treating scoliosis in early childhood. Dtsch Arztebl Int 115(22):371–376Google Scholar
  38. 38.
    Weinstein SL et al (2013) Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med 369(16):1512–1521CrossRefGoogle Scholar
  39. 39.
    Katz DE et al (2010) Brace wear control of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am 92(6):1343–1352CrossRefGoogle Scholar
  40. 40.
    Hoppenfeld S et al (2004) The rib epiphysis and other growth centers as indicators of the end of spinal growth. Spine 29(1):47–50CrossRefGoogle Scholar
  41. 41.
    Ridderbusch K et al (2013) Non-fusion techniques for treatment of pediatric scoliosis. Orthopade 42(12):1030–1037CrossRefGoogle Scholar
  42. 42.
    Kocyigit IA et al (2017) Graduation protocol after growing-rod treatment: Removal of implants without new instrumentation is not a realistic approach. J Bone Joint Surg Am 99(18):1554–1564CrossRefGoogle Scholar
  43. 43.
    Akbarnia BA et al (2013) Next generation of growth-sparing techniques: Preliminary clinical results of a magnetically controlled growing rod in 14 patients with early-onset scoliosis. Spine 38(8):665–670CrossRefGoogle Scholar
  44. 44.
    Cheung KM et al (2012) Magnetically controlled growing rods for severe spinal curvature in young children: A prospective case series. Lancet 379(9830):1967–1974CrossRefGoogle Scholar
  45. 45.
    Dannawi Z et al (2013) Early results of a remotely-operated magnetic growth rod in early-onset scoliosis. Bone Joint J 95(1):75–80CrossRefGoogle Scholar
  46. 46.
    Subramanian T et al (2018) A six-year observational study of 31 children with early-onset scoliosis treated using magnetically controlled growing rods with a minimum follow-up of two years. Bone Joint J 100(9):1187–1200CrossRefGoogle Scholar
  47. 47.
    Nnadi C et al (2018) An NIHR-approved two-year observational study on magnetically controlled growth rods in the treatment of early onset scoliosis. Bone Joint J 100(4):507–515CrossRefGoogle Scholar
  48. 48.
    Akbarnia BA et al (2005) Dual growing rod technique for the treatment of progressive early-onset scoliosis: A multicenter study. Spine 30(17 Suppl):S46–57CrossRefGoogle Scholar
  49. 49.
    Teoh KH et al (2016) Magnetic controlled growing rods for early-onset scoliosis: A 4-year follow-up. Spine J 16(4 Suppl):S34–9CrossRefGoogle Scholar
  50. 50.
    Ridderbusch K et al (2017) Preliminary results of magnetically controlled growing rods for early onset scoliosis. J Pediatr Orthop 37(8):e575–e580CrossRefGoogle Scholar
  51. 51.
    Stucker R (2009) Results of treatment of progressive scoliosis with SMA staples. Orthopade 38(2):176–180CrossRefGoogle Scholar
  52. 52.
    Jain V et al (2014) Surgical aspects of spinal growth modulation in scoliosis correction. Instr Course Lect 63:335–344Google Scholar
  53. 53.
    Samdani AF et al (2015) Anterior vertebral body tethering for immature adolescent idiopathic scoliosis: One-year results on the first 32 patients. Eur Spine J 24(7):1533–1539CrossRefGoogle Scholar
  54. 54.
    Hwang SW et al (2013) A multicenter analysis of factors associated with change in height after adolescent idiopathic scoliosis deformity surgery in 447 patients. J Neurosurg Spine 18(3):298–302CrossRefGoogle Scholar
  55. 55.
    Şarlak AY et al (2012) The height gain in scoliotic deformity correction: Assessed by new predictive formula. Comput Math Methods Med.  https://doi.org/10.1155/2012/167021 Google Scholar
  56. 56.
    Bao H et al (2018) Predicted final spinal height in patients with adolescent idiopathic scoliosis can be achieved by surgery regardless of maturity status. Bone Joint J 1(0):1372–1376CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Zentrum für Orthopädie, Unfallchirurgie und Paraplegiologie, Klinik für Orthopädie und UnfallchirurgieUniversitätsklinik HeidelbergHeidelbergDeutschland

Personalised recommendations