Advertisement

Der Orthopäde

, Volume 47, Issue 12, pp 1009–1017 | Cite as

Robot-assisted vs. conventional unicompartmental knee arthroplasty

Systematic review and meta-analysis
  • Jun Fu
  • Yuning Wang
  • Xiang Li
  • Baozhan Yu
  • Ming Ni
  • Wei Chai
  • Libo Hao
  • Jiying ChenEmail author
Originalien

Abstract

Numerous advances have been made in prosthesis design, instrumentation and postoperative rehabilitation for unicompartmental knee arthroplasty; however, only 70–86% of patients are satisfied with the functional outcome and revision rates range between 10% and 20%. The primary outcome for this meta-analysis was implantation accuracy of component positioning and tibiofemoral component safe zone. A total of three randomized controlled trials (RCT), three quasi-RCTs and one prospective trial were included in this review. It was found that the use of robotic-assisted systems reduces implantation errors without an increase in adverse events. There are only a few reports about clinical outcome and long-term follow-up and whether the more accurate component positioning results in a better clinical effect or a better long-term survival of the implants is unknown.

Keywords

Orthopedic surgery Comparative study Randomized controlled trial Adverse events Implant 

Abbreviations

AKS

American Knee Society

CT

Computed tomography

MeSH

Medical Subject Headings

PCT

Prospective cohort trial

QUORUM

Quality of reporting meta-analyses

RCT

Randomized controlled trial

ROM

Range of motion

TKA

Total knee arthroplasty

UKA

Unicompartmental knee arthroplasty

WOMAC

Western Ontario and McMaster Universities Osteoarthritis

Roboterassistierte vs. konventionelle unikompartimentäre Knieendoprothese

Systematisches Review und Metaanalyse

Zusammenfassung

Trotz vieler Fortschritte bezüglich des Prothesendesigns, Instrumentariums und der postoperativen Rehabilitation bei unikompartimentären Knieendoprothesen sind nur 70–86 % der Patienten mit dem funktionellen Outcome zufrieden; die Revisionsraten liegen zwischen 10 % und 20 %. Das primäre Outcome dieser Metaanalyse war die Genauigkeit der Positionierung von Komponenten bei Implantation sowie die Sicherheitszone bei tibiofemoralen Komponenten. Insgesamt 3 randomisierte kontrollierte Studien (RCT), drei Quasi-RCT und eine prospektive Studie wurden in diesen Review eingeschlossen. Es wurde festgestellt, dass die Verwendung roboterassistierter Systeme die Implantationsfehler reduziert, ohne dass die Zahl der unerwünschten Ereignisse steigt. Hinsichtlich des klinischen Outcomes und Langzeit-Follow-up liegen nur wenige Berichte vor. Ob eine genauere Positionierung der Komponenten bessere klinische Effekt oder eine längere Langzeithaltbarkeit der Implantate erzielt, ist unbekannt.

Schlüsselwörter

Orthopädische Operation Vergleichsstudie Randomisierte kontrollierte Studie Unerwünschte Ereignisse Implantat 

Notes

Funding

This work was supported by the Translational Medicine Project of Chinese People’s Liberation Army General Hospital (2016TM-004).

Compliance with ethical guidelines

Conflict of interest

J. Fu, Y. Wang, X. Li, B. Yu, M. Ni, W. Chai, L. Hao and J. Chen declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Bolognesi MP, Greiner MA, Attarian DE, Watters TS, Wellman SS, Curtis LH, Berend KR, Setoguchi S (2013) Unicompartmental knee arthroplasty and total knee arthroplasty among Medicare beneficiaries, 2000 to 2009. J Bone Joint Surg Am 95(22):174–176CrossRefGoogle Scholar
  2. 2.
    Swank ML, Alkire M, Conditt M, Lonner JH (2009) Technology and cost-effectiveness in knee arthroplasty: computer navigation and robotics. Am J Orthop (Belle Mead, NJ) 38(2 Suppl):32–36Google Scholar
  3. 3.
    Liddle AD, Judge A, Pandit H, Murray DW (2014) Adverse outcomes after total and unicompartmental knee replacement in 101,330 matched patients: a study of data from the National Joint Registry for England and Wales. Lancet 384(9952):1437–1445CrossRefGoogle Scholar
  4. 4.
    Labek G, Sekyra K, Pawelka W et al (2011) Outcome and reproducibility of data concerning the Oxford unicompartmental knee arthroplasty: a structured literature review including arthroplasty registry data. Acta Orthop 82(2):131–135CrossRefGoogle Scholar
  5. 5.
    Emerson RH Jr, Higgins LL (2008) Unicompartmental knee arthroplasty with the oxford prosthesis in patients with medial compartment arthritis. J Bone Joint Surg Am 90(1):118–122CrossRefGoogle Scholar
  6. 6.
    Eickmann TH, Collier MB, Sukezaki F, McAuley JP, Engh GA (1998) Survival of medial unicondylar arthroplasties placed by one surgeon 1984. Clin Orthop Relat Res 2006(452):143–149Google Scholar
  7. 7.
    Barbadoro P, Ensini A, Leardini A, d’Amato M, Feliciangeli A, Timoncini A, Amadei F, Belvedere C, Giannini S (2014) Tibial component alignment and risk of loosening in unicompartmental knee arthroplasty: a radiographic and radiostereometric study. Knee Surg Sports Traumatol Arthrosc 22(12):3157–3162CrossRefGoogle Scholar
  8. 8.
    Jenny JY, Boeri C (2003) Unicompartmental knee prosthesis implantation with a non-image-based navigation system: rationale, technique, case-control comparative study with a conventional instrumented implantation. Knee Surg Sports Traumatol Arthrosc 11(1):40–45CrossRefGoogle Scholar
  9. 9.
    Moreland JR (1988) Mechanisms of failure in total knee arthroplasty. Clin Orthop Relat Res 226:49Google Scholar
  10. 10.
    Mariani EM, Bourne MH, Jackson RT, Jackson ST, Jones P (2007) Early failure of unicompartmental knee arthroplasty. J Arthroplasty 22(6 Suppl 2):81–84CrossRefGoogle Scholar
  11. 11.
    Matsen FA 3rd, Garbini JL, Sidles JA, Pratt B, Baumgarten D, Kaiura R (1993) Robotic assistance in orthopaedic surgery. A proof of principle using distal femoral arthroplasty. Clin Orthop Relat Res 296:178–186Google Scholar
  12. 12.
    Cobb J, Henckel J, Gomes P, Harris S, Jakopec M, Rodriguez F, Barrett A, Davies B (2006) Hands-on robotic unicompartmental knee replacement: a prospective, randomized controlled study of the acrobot system. J Bone Joint Surg Br 88(2):188–197CrossRefGoogle Scholar
  13. 13.
    Lonner JH, Moretti VM (2016) The evolution of image-free robotic assistance in unicompartmental knee arthroplasty. Am J Orthop (Belle Mead, NJ) 45(4):249–254Google Scholar
  14. 14.
    Hansen DC, Kusuma SK, Palmer RM, Harris KB (2014) Robotic guidance does not improve component position or short-term outcome in medial unicompartmental knee arthroplasty. J Arthroplasty 29(9):1784–1789CrossRefGoogle Scholar
  15. 15.
    Bell SW, Anthony I, Jones B, MacLean A, Rowe P, Blyth M (2016) Improved accuracy of component positioning with robotic-assisted unicompartmental knee arthroplasty: data from a prospective, randomized controlled study. J Bone Joint Surg Am 98(8):627–635CrossRefGoogle Scholar
  16. 16.
    Citak M, Suero EM, Citak M, Dunbar NJ, Branch SH, Conditt MA, Banks SA, Pearle AD (2013) Unicompartmental knee arthroplasty: is robotic technology more accurate than conventional technique? Knee 20(4):268–271CrossRefGoogle Scholar
  17. 17.
    Lonner JH, John TK, Conditt MA (2010) Robotic arm-assisted UKA improves tibial component alignment: a pilot study. Clin Orthop Relat Res 468(1):141–146CrossRefGoogle Scholar
  18. 18.
    MacCallum KP, Danoff JR, Geller JA (2016) Tibial baseplate positioning in robotic-assisted and conventional unicompartmental knee arthroplasty. Eur J Orthop Surg Traumatol 26(1):93–98CrossRefGoogle Scholar
  19. 19.
    Rodriguez F, Harris S, Jakopec M, Barrett A, Gomes P, Henckel J, Cobb J, Davies B (2005) Robotic clinical trials of uni-condylar arthroplasty. Int J Med Robot 1(4):20–28CrossRefGoogle Scholar
  20. 20.
    Dunbar NJ, Roche MW, Park BH, Branch SH, Conditt MA, Banks SA (2012) Accuracy of dynamic tactile-guided unicompartmental knee arthroplasty. J Arthroplasty 27(5):803–808CrossRefGoogle Scholar
  21. 21.
    Mofidi A, Plate JF, Lu B, Conditt MA, Lang JE, Poehling GG, Jinnah RH (2014) Assessment of accuracy of robotically assisted unicompartmental arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(8):1918–1925CrossRefGoogle Scholar
  22. 22.
    Smith JR, Riches PE, Rowe PJ (2014) Accuracy of a freehand sculpting tool for unicondylar knee replacement. Int J Med Robot 10(2):162–169CrossRefGoogle Scholar
  23. 23.
    Lonner JH, Smith JR, Picard F, Hamlin B, Rowe PJ, Riches PE (2015) High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study. Clin Orthop Relat Res 473(1):206–212CrossRefGoogle Scholar
  24. 24.
    Plate JF, Mofidi A, Mannava S, Smith BP, Lang JE, Poehling GG, Conditt MA, Jinnah RH (2013) Achieving accurate ligament balancing using robotic-assisted unicompartmental knee arthroplasty. Adv Orthop.  https://doi.org/10.1155/2013/837167 Google Scholar
  25. 25.
    Moschetti WE, Konopka JF, Rubash HE, Genuario JW (2016) Can robot-assisted unicompartmental knee arthroplasty be cost-effective? A Markov decision analysis. J Arthroplasty 31(4):759–765CrossRefGoogle Scholar
  26. 26.
    Sinha RK (2009) Outcomes of robotic arm-assisted unicompartmental knee arthroplasty. Am J Orthop (Belle Mead, NJ) 38(2 Suppl):20–22Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Jun Fu
    • 1
  • Yuning Wang
    • 2
  • Xiang Li
    • 1
  • Baozhan Yu
    • 1
  • Ming Ni
    • 1
  • Wei Chai
    • 1
  • Libo Hao
    • 1
  • Jiying Chen
    • 1
    Email author
  1. 1.Department of OrthopaedicsChinese People’s Liberation Army General Hospital (301 Hospital)BeijingChina
  2. 2.Clinical Department of SurgeryChinese People’s Liberation Army General Hospital (301 Hospital)BeijingChina

Personalised recommendations