Advertisement

Der Orthopäde

, Volume 47, Issue 12, pp 986–992 | Cite as

Transforaminal thoracic interbody fusion

Treatment of thoracic myelopathy caused by anterior compression
  • Ling-jia Yu
  • Wen-jing Li
  • Shi-gong Guo
  • Yu ZhaoEmail author
Originalien

Abstract

Background

The aim of this study was to evaluate the early clinical safety and efficacy of transforaminal thoracic interbody fusion (TTIF) with interbody cage application for thoracic myelopathy caused by anterior compression (TMAC).

Methods

A total of 10 patients who underwent TTIF for TMAC from July 2009 to July 2014 were retrospectively reviewed. Thoracic spinal lesions included thoracic disc herniation, thoracic ossification of posterior longitudinal ligament, thoracic vertebral compression fracture, and thoracic spine fracture dislocation. Demographic data, radiological findings as well as operative information were collected. Postoperative functional outcomes evaluated by the modified Japanese Orthopedic Association (mJOA) score and complications were analyzed.

Results

The mean operation time was 186.5 min (range 110–315 min), the mean operative blood loss was 845.0 ml (range 400–2000 ml), and the mean recumbent period was 2.7 days (range 1–8 days). During the follow-up period all patients exhibited significant improvements in neurological deficits. The mJOA score improved from a mean of 6.1 ± 1.7 preoperatively to 7.4 ± 1.6 postoperatively and to 9.3 ± 1.6 at final follow-up (P <0.01), with an overall recovery rate of 69.0 ± 26.1%. Solid fusion was observed in all cases. A wound infection was found in one case, in which the patient recovered with no residual neurological deficits after surgical debridement and administration of intravenous antibiotics. No cage-related complications were found in this study.

Conclusion

The use of TTIF with cage application can be an effective treatment method of thoracic myelopathy caused by anterior compression, with favorable efficacy and safety.

Keywords

Decompression Spine disease Spinal fusion Thoracic vertebrae Retrospective study 

Abbreviations

CF

Compression fracture

FD

Fracture dislocation

IR

Improvement rate

mJOA

Modified Japanese Orthopedic Association scale

PEEK

Polyetheretherketone

PLIF

Posterior lumbar interbody fusion

SEP

Somatosensory evoked potential

TDH

Thoracic disc herniation

TMAC

Thoracic myelopathy caused by anterior compression

TOPLL

Thoracic ossification of posterior longitudinal ligament

TSS

Thoracic spinal stenosis

TTIF

Transforaminal thoracic interbody fusion

Transforaminale thorakale Spondylodese

Therapie der durch eine anteriore Kompression bedingten thorakalen Myelopathie

Zusammenfassung

Hintergrund

Ziel der Studie war es, die frühe klinische Sicherheit und Wirksamkeit der transforaminalen thorakalen Spondylodese („transforaminal thoracic interbody fusion“ [TTIF]) mit intervertebralem Cage bei thorakaler Myelopathie bedingt durch eine anteriore Kompression (TMAC) zu ermitteln.

Methoden

Insgesamt 10 Patienten, die zwischen Juli 2009 und Juli 2014 eine TTIF bei TMAC erhalten hatten, wurden retrospektiv untersucht. Thorakale Wirbelsäulenschäden umfassten thorakale Bandscheibenvorfälle, thorakale Ossifikationen des Lig. longitudinale posterius, Kompressionsfrakturen thorakaler Wirbelkörper und Luxationsfrakturen der Brustwirbelsäule. Demografische Daten, radiologische Befunde und chirurgische Angaben wurden gesammelt. Mit dem modifizierten Japanese-Orthopedic-Association(mJOA)-Score bewertete postoperative funktionelle Behandlungsergebnisse und Komplikationen wurden analysiert.

Ergebnisse

Die mittlere Operationsdauer betrug 186.5 min (Bereich: 110–315 min), der mittlere operative Blutverlust 845,0 ml (Bereich: 400–2000 ml) und die mittlere Liegezeit 2,7 Tage (Bereich: 1–8 Tage). Im Follow-up zeigten alle Patienten signifikante Verbesserungen der neurologischen Störungen. Der mJOA-Score verbesserte sich von durchschnittlich 6,1 ± 1,7 präoperativ auf 7,4 ± 1,6 postoperativ und auf 9,3  ± 1,6 in der letzten Follow-up-Untersuchung (P <0,01) bei einer Gesamtgenesungsrate von 69,0 ± 26,1 %. In allen Fällen war eine stabile Spondylodese zu verzeichnen. Eine Wundinfektion fand sich in einem Fall, wobei sich der Patient nach chirurgischem Débridement und intravenöser Antibiotikatherapie erholte und keine bleibenden neurologischen Störungen aufwies. Cage-bedingte Komplikationen traten in dieser Studie nicht auf.

Schlussfolgerung

Die TTIF mit Cage kann eine wirksame und sichere Therapiemethode bei thorakaler Myelopathie bedingt durch eine anteriore Kompression sein.

Schlüsselwörter

Dekompression Wirbelsäulenerkrankung Spondylodese Brustwirbel Retrospektive Studie 

Notes

Compliance with ethical guidelines

Conflict of interest

L. Yu, W. Li, S. Guo and Y. Zhao declare that they have no competing interests.

This study was approved by the institutional review board of Peking Union Medical College Hospital (no. S‑K364). The methods were carried out in accordance with the relevant guidelines. Written informed consent was obtained from all participants in the study at final follow-up at the clinic.

References

  1. 1.
    Carr DA et al (2017) Management of thoracic disc herniations via posterior unilateral modified transfacet pedicle-sparing decompression with segmental instrumentation and Interbody fusion. Global Spine J 7:506–513.  https://doi.org/10.1177/2192568217694140 CrossRefGoogle Scholar
  2. 2.
    Yoshihara H (2014) Surgical treatment for thoracic disc herniation: an update. Spine 39:E406–E412.  https://doi.org/10.1097/BRS.0000000000000171 CrossRefGoogle Scholar
  3. 3.
    Lubelski D et al (2013) Lateral extracavitary, costotransversectomy, and transthoracic thoracotomy approaches to the thoracic spine: review of techniques and complications. J Spinal Disord Tech 26:222–232.  https://doi.org/10.1097/BSD.0b013e31823f3139 CrossRefGoogle Scholar
  4. 4.
    Machino M, Yukawa Y, Ito K, Nakashima H, Kato F (2010) A new thoracic reconstruction technique “transforaminal thoracic interbody fusion”: a preliminary report of clinical outcomes. Spine 35:E1000–E1005.  https://doi.org/10.1097/BRS.0b013e3181dc9153 CrossRefGoogle Scholar
  5. 5.
    Sudprasert W, Choovongkomol K, Piyapromdee U, Leownorasate M (2016) Impact on neurological recovery of transforaminal debridement and Interbody fusion versus transpedicular decompression in combination with pedicle screw instrumentation for treating thoracic and lumbar spinal tuberculosis. Asian Spine J 10:543–552.  https://doi.org/10.4184/asj.2016.10.3.543 CrossRefGoogle Scholar
  6. 6.
    Suk SI et al (1997) Adding posterior lumbar interbody fusion to pedicle screw fixation and posterolateral fusion after decompression in spondylolytic spondylolisthesis. Spine 22:210–219 (discussion 219–220)CrossRefGoogle Scholar
  7. 7.
    Kato S et al (2015) Gradual spinal cord decompression through migration of floated plaques after anterior decompression via a posterolateral approach for OPLL in the thoracic spine. J Neurosurg Spine 23:479–483.  https://doi.org/10.3171/2015.1.SPINE14960 CrossRefGoogle Scholar
  8. 8.
    Harms J, Jeszenszky D, Stoltze D, Böhm H (1997) True spondylolisthesis reduction and monosegmental fusion in spondylolisthesis. In: The textbook of spinal surgery, 2nd edn. Lippincott-Raven, Philadelphia, pp 1337–1347Google Scholar
  9. 9.
    Machino M et al (2013) “Transforaminal thoracic interbody fusion” in the management of lower thoracic spine fracture dislocations: technical note. J Spinal Disord Tech 26:E209–E214.  https://doi.org/10.1097/BSD.0b013e318286ba15 CrossRefGoogle Scholar
  10. 10.
    Zhao Y et al (2013) Transthoracic approach for the treatment of calcified giant herniated thoracic discs. Eur Spine J 22:2466–2473.  https://doi.org/10.1007/s00586-013-2775-8 CrossRefGoogle Scholar
  11. 11.
    Strom RG et al (2016) Lateral interbody fusion combined with open posterior surgery for adult spinal deformity. J Neurosurg Spine 25:697–705.  https://doi.org/10.3171/2016.4.SPINE16157 CrossRefGoogle Scholar
  12. 12.
    Huang RC, Meredith DS, Taunk R (2010) Transforaminal thoracic Interbody fusion (TTIF) for treatment of a chronic chance injury. HSS J 6:26–29.  https://doi.org/10.1007/s11420-009-9138-3 CrossRefGoogle Scholar
  13. 13.
    Uribe JS et al (2012) Minimally invasive lateral approach for symptomatic thoracic disc herniation: initial multicenter clinical experience. J Neurosurg Spine 16:264–279.  https://doi.org/10.3171/2011.10.SPINE11291 CrossRefGoogle Scholar
  14. 14.
    Zhong W et al (2015) Surgical management for thoracic spinal tuberculosis posterior only versus anterior video-assisted thoracoscopic surgery. PLoS ONE 10:e119759.  https://doi.org/10.1371/journal.pone.0119759 CrossRefGoogle Scholar
  15. 15.
    Ding WY et al (2009) Posterolateral transforaminal interbody fusion for thoracic disc herniation: a retrospective study of 38 cases. Orthop Surg 1:280–284.  https://doi.org/10.1111/j.1757-7861.2009.00048.x CrossRefGoogle Scholar
  16. 16.
    Wang LF et al (2013) Clinical results and intramedullary signal changes of posterior decompression with transforaminal interbody fusion for thoracic myelopathy caused by combined ossification of the posterior longitudinal ligament and ligamentum flavum. Chin Med J 126:3822–3827Google Scholar
  17. 17.
    Zhang HQ et al (2012) Surgical management for multilevel noncontiguous thoracic spinal tuberculosis by single-stage posterior transforaminal thoracic debridement, limited decompression, interbody fusion, and posterior instrumentation (modified TTIF). Arch Orthop Trauma Surg 132:751–757.  https://doi.org/10.1007/s00402-012-1473-z CrossRefGoogle Scholar
  18. 18.
    Liu FJ et al (2013) Posterior decompression with transforaminal interbody fusion for thoracic myelopathy due to ossification of the posterior longitudinal ligament and the ligamentum flavum at the same level. J Clin Neurosci 20:570–575.  https://doi.org/10.1016/j.jocn.2012.04.016 CrossRefGoogle Scholar
  19. 19.
    Cheng Z, Wang J, Zheng Q, Wu Y, Guo X (2015) Anterolateral radical debridement and interbody bone grafting combined with transpedicle fixation in the treatment of thoracolumbar spinal tuberculosis. Medicine (Baltimore) 94:e721.  https://doi.org/10.1097/MD.0000000000000721 CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Ling-jia Yu
    • 1
  • Wen-jing Li
    • 2
  • Shi-gong Guo
    • 3
  • Yu Zhao
    • 1
    Email author
  1. 1.Department of Orthopaedics, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  2. 2.Department of OrthopaedicsBeijing Jishuitan HospitalBeijingChina
  3. 3.Department of Trauma & Orthopaedic SurgeryLister HospitalStevenageUK

Personalised recommendations