Intraoperatives Neuromonitoring in der rekonstruktiven Halswirbelsäulenchirurgie

Leitthema

Zusammenfassung

Die Korrektur von Halswirbelsäulendeformitäten ist mit einem nicht unerheblichen Risiko der neurologischen Verschlechterung verbunden. Ein intraoperatives Neuromonitoring (IOM) kann die Patientensicherheit in diesem Zusammenhang deutlich erhöhen. Allerdings ist die Datenlage bezüglich der Wirksamkeit in der rekonstruktiven HWS-Chirurgie beschränkt. Da das chirurgische Manöver in der rekonstruktiven HWS-Chirurgie mit den gleichen Risiken für das Rückenmark einhergeht wie die Skoliosekorrektur, ist von einem vergleichbaren Einfluss des IOM auf das klinische Ergebnis auszugehen. Für das IOM ist eine Senkung der Rate neurologischer Komplikationen im Rahmen der Skoliosechirurgie belegt. Im vorliegenden Beitrag wird die aktuelle Studienlage zur Wirksamkeit des IOM in der rekonstruktiven HWS-Chirurgie sowie in der Skoliosechirurgie erörtert.

Schlüsselwörter

Neurochirurgische Verfahren Orthopädische Verfahren Patientensicherheit Skoliose Rückenmark 

Abkürzungen

EEG

Elektroenzephalogram

HWS

Halswirbelsäule

IOM

Intraoperatives Neuromonitoring

KI

Konfidenzintervall

MEP

Motorisch evozierte Potenziale

SSEP

Somatosensorisch evozierte Potenziale

Intraoperative neuromonitoring in cervical deformity surgery

Abstract

Correction of cervical deformity is associated with a considerable risk of neurological deterioration. The use of intraoperative neuromonitoring (IOM) can, however, significantly increase patient safety. Nonetheless, data on the effectiveness of IOM during reconstructive cervical surgery are very limited. Since the surgical maneuvers in reconstructive cervical surgery represent the same dangers to the spinal cord as in scoliosis correction, the same influence of IOM on the clinical outcome may be assumed. IOM has been shown to decrease the rate of neurological complications in scoliosis surgery. Herein, we discuss the current evidence for the efficacy of IOM during reconstructive cervical surgery as well as during scoliosis surgery.

Keywords

Neurosurgical procedures Orthopedic procedures Patient safety Scoliosis Spinal cord 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

E. Shiban und B. Meyer geben an, dass keine Interessenkonflikte bestehen.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Appel S, Korn A, Biron T, Goldstein K, Rand N, Millgram M, Floman Y, Ashkenazi E (2017) Efficacy of head repositioning in restoration of electrophysiological signals during cervical spine procedures. J Clin Neurophysiol 34:174–178CrossRefPubMedGoogle Scholar
  2. 2.
    Ajiboye RM, Zoller SD, Sharma A, Mosich GM, Drysch A, Li J, Reza T, Pourtaheri S (2017) Intraoperative neuromonitoring for anterior cervical spine surgery: what is the evidence? Spine 42(1976):385–393CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bhagat S, Durst A, Grover H et al (2015) An evaluation of multimodal spinal cord monitoring in scoliosis surgery: a single centre experience of 354 operations. Eur Spine J 24:1399–1407CrossRefPubMedGoogle Scholar
  4. 4.
    Belanger TA, Milam RAIV, Roh JS, Bohlman HH (2005) Cervicothoracic extension osteotomy for chin-on-chest deformity in ankylosing spondylitis. J Bone Joint Surg Am 87:1732–1738PubMedGoogle Scholar
  5. 5.
    Etame AB, Than KD, Wang AC, La Marca F, Park P (2008) Surgical management of symptomatic cervical or cervicothoracic kyphosis due to ankylosing spondylitis. Spine 33:E559–E564CrossRefPubMedGoogle Scholar
  6. 6.
    Fehlings MG, Smith JS, Kopjar B et al (2012) Perioperative and delayed complications associated with the surgical treatment of cervical spondylotic myelopathy based on 302 patients from the AOSpine North America Cervical Spondylotic Myelopathy Study. J Neurosurg Spine 16:425–432CrossRefPubMedGoogle Scholar
  7. 7.
    Gavaret M, Trébuchon A, Aubert S et al (2011) Intraoperative monitoring in pediatric orthopedic spinal surgery: three hundred consecutive monitoring cases of which 10 % of patients were younger than 4 years of age. Spine 36:1855–1863CrossRefPubMedGoogle Scholar
  8. 8.
    Gavaret M, Pesenti S, Choufani E et al (2016) Intraoperative spinal cord monitoring in children under 4 years old. Eur Spine J 25:1847–1854CrossRefPubMedGoogle Scholar
  9. 9.
    Hamilton DK, Smith JS, Sansur CA, Glassman SD, Ames CP, Berven SH, Polly DW Jr, Perra JH, Knapp DR, Boachie-Adjei O, McCarthy RE, Shaffrey CI, Scoliosis Research Society Morbidity and Mortality Committee (2011) Rates of new neurological deficit associated with spine surgery based on 108,419 procedures: a report of the scoliosis research society morbidity and mortality committee. Spine 36(1976):1218–1228CrossRefPubMedGoogle Scholar
  10. 10.
    Hsu B, Cree AK, Lagopoulos J, Cummine JL (2008) Transcranial motor-evoked potentials combined with response recording through compound muscle action potential as the sole modality of spinal cord monitoring in spinal deformity surgery. Spine 33:1100–1106CrossRefPubMedGoogle Scholar
  11. 11.
    Kim CH, Hong JT, Chung CK, Kim JY, Kim SM, Lee KW (2015) Intraoperative electrophysiological monitoring during posterior craniocervical distraction and realignment for congenital craniocervical anomaly. Eur Spine J. 24:671–678Google Scholar
  12. 12.
    Langeloo DD, Lelivelt A, Louis Journee H, Slappendel R, de Kleuver M (2003) Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine 28:1043–1050PubMedGoogle Scholar
  13. 13.
    Langeloo DD, Journee HL, Pavlov PW, de Kleuver M (2006) Cervical osteotomy in ankylosing spondylitis: evaluation of new developments. Eur Spine J 15:493–500CrossRefPubMedGoogle Scholar
  14. 14.
    Mummaneni PV, Dhall SS, Rodts GE, Haid RW (2008) Circumferential fusion for cervical kyphotic deformity. J Neurosurg Spine 9:515–521CrossRefPubMedGoogle Scholar
  15. 15.
    Nottmeier EW, Deen HG, Patel N, Birch B (2009) Cervical kyphotic deformity correction using 360-degree reconstruction. J Spinal Disord Tech 22:385–391CrossRefPubMedGoogle Scholar
  16. 16.
    O’Shaughnessy BA, Liu JC, Hsieh PC, Koski TR, Ganju A, Ondra SL (2008) Surgical treatment of fixed cervical kyphosis with myelopathy. Spine 33:771–778CrossRefPubMedGoogle Scholar
  17. 17.
    Park P, Wang AC, Sangala JR, Kim SM, Hervey-Jumper S, Than KD, Farokhrani A, Lamarca F (2011) Impact of multimodal intraoperative monitoring during correction of symptomatic cervical or cervicothoracic kyphosis. J Neurosurg Spine 14:99–105Google Scholar
  18. 18.
    Plata Bello J, Pérez-Lorensu PJ, Roldán-Delgado H, Brage L, Rocha V, Hernández-Hernández V, Dóniz A, García-Marín V (2015) Role of multimodal intraoperative neurophysiological monitoring during positioning of patient prior to cervical spine surgery. Clin Neurophysiol 126:1264–1270CrossRefPubMedGoogle Scholar
  19. 19.
    Peng X, Chen L, Wan Y, Zou X (2011) Treatment of primary basilar invagination by cervical traction and posterior instrumented reduction together with occipitocervical fusion. Spine 36:1528–1531CrossRefPubMedGoogle Scholar
  20. 20.
    Shiban E, Meyer B, Stoffel M, Weinzierl M (2017) Intraoperatives neurophysiologisches Monitoring (IOM) in der Wirbelsäulenchirurgie. Wirbelsäule 1:203–218CrossRefGoogle Scholar
  21. 21.
    Simmons ED, DiStefano RJ, Zheng Y, Simmons EH (2006) Thirty six years experience of cervical extension osteotomy in ankylosing spondylitis: techniques and outcomes. Spine 31:3006–3012CrossRefPubMedGoogle Scholar
  22. 22.
    Sloan TB, Heyer EJ (2002) Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 19:430–443CrossRefPubMedGoogle Scholar
  23. 23.
    Tobert DG, Glotzbecker MP, Hresko MT, Karlin LI, Proctor MR, Emans JB, Miller PE, Hedequist DJ (2017) Efficacy of Intraoperative Neurophysiologic Monitoring for Pediatric Cervical Spine Surgery. Spine 42:974–978CrossRefPubMedGoogle Scholar
  24. 24.
    Traynelis VC, Abode-Iyamah KO, Leick KM, Bender SM, Greenlee JD (2012) Cervical decompression and reconstruction without intraoperative neurophysiological monitoring. J Neurosurg Spine 16:107–113CrossRefPubMedGoogle Scholar
  25. 25.
    Thirumala PD, Huang J, Thiagarajan K, Cheng H, Balzer J, Crammond DJ (2016) Diagnostic accuracy of combined multimodality SSEP and TcMEP intraoperative monitoring in patients with idiopathic scoliosis. Spine 41:E1177–E1184CrossRefPubMedGoogle Scholar
  26. 26.
    Thuet ED, Winscher JC, Padberg AM et al (2010) Validity and reliability of intraoperative monitoring in pediatric spinal deformity surgery: a 23-year experience of 3436 surgical cases. Spine 35:1880–1886CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Neurochirurgische Klinik und Poliklinik, Klinikum rechts der IsarTechnische Universität München (TUM)MünchenDeutschland

Personalised recommendations