Advertisement

Multiple parameters for evaluating posterior longitudinal ligaments in thoracolumbar burst fractures

  • Fei Chen
  • Tao ShiEmail author
  • Yang Li
  • Han Wang
  • Fei Luo
  • Tianyong Hou
Originalien

Abstract

Background

The posterior longitudinal ligament plays a key role in spinal stability. The purpose of this study was to determine the injuries of the posterior longitudinal ligament (PLL) in thoracolumbar burst fractures.

Patients and methods

Patients suffering a thoracolumbar burst fracture from January 2011 to December 2015 were divided into an intact group and a disrupted group according to the status of the PLL. Mid-sagittal canal diameter, width and height of bone fragments, inversion angle and horizontal rotation angle of bone fragments and local kyphosis angle were measured. Anterior, middle and posterior vertebrae compression ratio, mid-sagittal diameter compression ratio, ratio of height of bone fragments occupying the posterior wall of the injured vertebral body and ratio of the width of bone fragment occupying the transverse canal diameter were calculated.

Results

A total of 95 patients were included in the study including 52 patients in the intact group and 43 patients in the disrupted group. There were significant differences on anterior and posterior vertebrae compression ratio, mid-sagittal diameter compression ratio, inversion angle and horizontal rotation angle of bone fragment (P  0.05) between the two groups. Injury of the PLL showed a positive correlation with the mid-sagittal diameter compression ratio and inversion angle of bone fragment (P  0.05).

Conclusion

The mid-sagittal diameter compression ratio and inversion angle of bone fragment can be used to assess the status of the PLL in thoracolumbar burst fractures. When the mid-sagittal diameter compression ratio was 52% and the inversion angle of the bone fragment was 33° the PLL was likely to be disrupted.

Keywords

Retrospective study Computed tomography Kyphosis Spinal canal Constriction, pathologic 

Abbreviations

AO

Working Group on Osteosynthesis Questions

ASIA

American Spinal Injury Association

AVBCR

Anterior vertebral body compression ratio

CT

Computed tomography

HBF

Height of bone fragment

HRA

Horizontal rotation angle

IA

Inversion angle

MRI

Magnetic resonance imaging

MSD

Mid-sagittal canal diameter

MVA

Motor vehicle accident

PLC

Posterior ligament complex

PLL

Posterior longitudinal ligament

PVBCR

Posterior vertebral body compression ratio

TCD

Transvers canal diameter

WBF

Width of bone fragment

Multiple Parameter zur Evaluation posteriorer longitudinaler Ligamente bei thorakolumbalen Berstungsfrakturen

Zusammenfassung

Hintergrund

Das posteriore longitudinale Ligament (PLL) spielt eine Schlüsselrolle in der Stabilität der Wirbelsäule. Zweck dieser Studie war es, die Verletzungen des posterioren longitudinalen Ligaments bei thorakolumbalen Berstungsfrakturen zu erfassen.

Patienten und Methoden

Patienten, die zwischen Januar 2011 und Dezember 2015 eine thorakolumbale Berstungsfraktur erlitten, wurden nach ihrem PLL-Status jeweils in eine Gruppe mit intaktem PLL (intakte Gruppe) und eine Gruppe mit rupturiertem PLL (rupturierte Gruppe) eingeteilt. Der Durchmesser des mittleren sagittalen Kanals, die Breite und Höhe der Knochenfragmente, der Inversionswinkel und der horizontale Rotationswinkel der Knochenfragmente sowie der lokale Kyphosewinkel wurden gemessen. Das Kompressionsverhältnis der anterioren, mittleren und posterioren Wirbel und des mittleren sagittalen Durchmessers sowie das Verhältnis der Knochenfragmente, welche die hintere Wand des verletzten Wirbelkörpers belegen, und das Verhältnis der Breite des Knochenfragments, das den transversen Kanaldurchmesser belegt, wurden berechnet.

Ergebnisse

Insgesamt 95 Patienten wurden in die Studie eingeschlossen, davon 52 Patienten in die intakte Gruppe und 43 Patienten in die rupturierte Gruppe. Zwischen den Gruppen gab es signifikante Unterschiede im Kompressionsverhältnis der anterioren und posterioren Wirbel und des mittleren sagittalen Durchmessers sowie bezüglich des Inversionswinkels und des horizontalen Rotationswinkels des Knochenfragments (p  0,05). Die Verletzung des PLL korrelierte positiv mit dem Kompressionsverhältnis des mittleren sagittalen Durchmessers sowie dem Inversionswinkel des Knochenfragments (p  0,05).

Schlussfolgerung

Das Kompressionsverhältnis des mittleren sagittalen Durchmessers und des Inversionswinkels des Knochenfragments kann zur Beurteilung des PLL-Status bei thorakolumbalen Berstungsfrakturen verwendet werden. Bei einem Kompressionsverhältnis von 52 % und einem Inversionswinkel des Knochenfragments von 33° war eine Ruptur des PLL wahrscheinlich.

Schlüsselwörter

Retrospektive Studie Computertomographie Kyphose Wirbelkanal Pathologische Konstriktion 

Notes

Compliance with ethical guidelines

Conflict of interest

F. Chen, T. Shi, Y. Li, H. Wang, F. Luo and T. Hou declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors. For images or other information within the manuscript which could identify patients, informed consent was obtained from them and/or the legal guardians.

References

  1. 1.
    Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8(8):817–831CrossRefGoogle Scholar
  2. 2.
    Dai LY, Jiang SD, Wang XY et al (2007) A review of the management of thoracolumbar burst fractures. Surg Neurol 67(3):221–231CrossRefGoogle Scholar
  3. 3.
    Zhao X, Fang XQ, Zhao FD et al (2010) Traumatic canal stenosis should not be an indication for surgical decompression in thoracolumbar burst fracture. Med Hypotheses 75(6):550–552CrossRefGoogle Scholar
  4. 4.
    Agrawal SK, Fehlings MG (1996) Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)-Ca++ exchanger. J Neurosci 16(2):545–552CrossRefGoogle Scholar
  5. 5.
    Osterholm JL, Mathews GJ (1972) Altered norepinephrine metabolism following experimental spinal cord injury. Part 1: Relationship to hemorrhagic necrosis and post-wounding neurological deficits. J Neurosurg 36(4):386–394CrossRefGoogle Scholar
  6. 6.
    Faden AI, Simon RP (1988) A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol 23(6):623–626CrossRefGoogle Scholar
  7. 7.
    Hall ED, Yonkers PA, Horan KL et al (1989) Correlation between attenuation of posttraumatic spinal cord ischemia and preservation of tissue vitamin E by the 21-aminosteroid U74006F: evidence for an in vivo antioxidant mechanism. J Neurotrauma 6(3):169–176CrossRefGoogle Scholar
  8. 8.
    Faden AI, Jacobs TP, Holaday JW (1982) Comparison of early and late naloxone treatment in experimental spinal injury. Neurology 32(6):677–681CrossRefGoogle Scholar
  9. 9.
    Anderson DK, Means ED, Waters TR (1980) Spinal cord energy metabolism in normal and postlaminectomy cats. J Neurosurg 52(3):387–391CrossRefGoogle Scholar
  10. 10.
    Demopoulos HB, Flamm ES, Pietronigro DD et al (1980) The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand 492:91–119Google Scholar
  11. 11.
    Xu GJ, Li ZJ, Ma JX et al (2013) Anterior versus posterior approach for treatment of thoracolumbar burst fractures: a meta-analysis. Eur Spine J 22(10):2176–2183CrossRefGoogle Scholar
  12. 12.
    Scheer JK, Bakhsheshian J, Fakurnejad S et al (2015) Evidence-based medicine of traumatic thoracolumbar burst fractures: a systematic review of operative management across 20 years. Global Spine J 5(1):73–82CrossRefGoogle Scholar
  13. 13.
    Liu Z, Li Z, Xing D et al (2015) Two different surgery approaches for treatment of thoracolumbar fracture. Int J Clin Exp Med 8(12):22425–22429Google Scholar
  14. 14.
    Hashimoto T, Kaneda K, Abumi K (1988) Relationship between traumatic spinal canal stenosis and neurologic deficits in thoracolumbar burst fractures. Spine 13(11):1268–1272CrossRefGoogle Scholar
  15. 15.
    Willen J, Anderson J, Toomoka K et al (1990) The natural history of burst fractures at the thoracolumbar junction. J Spinal Disord 3(1):39–46CrossRefGoogle Scholar
  16. 16.
    Guerra J, Steven RG, Donald R (1984) Vertebral burst fractures: CT analysis of the retropulsed fragment. Radiology 153(3):769–772CrossRefGoogle Scholar
  17. 17.
    Kuklo TR, Polly DW, Owens BD et al (2001) Measurement of thoracic and lumbar fracture kyphosis. Evaluation of intraobserver, interobserver, and technique variability. Spine (Phila Pa 1976) 26(1):61–65 (discussion 66)CrossRefGoogle Scholar
  18. 18.
    Vaccaro AR, Oner C, Kepler CK et al (2013) AO spine spinal cord injury trauma knowledge forum. AO spine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine 38(23):2028–2037CrossRefGoogle Scholar
  19. 19.
    Grenier N, Greselle JF, Vital JM et al (1989) Normal and disrupted lumbar longitudinal ligaments: correlative MR and anatomic study. Radiology 171(1):197–205CrossRefGoogle Scholar
  20. 20.
    Feng B, Hu P, Lu SJ et al (2014) Effects of APP 5‑mer peptide analogue P165 on the synaptic proteins and signal transduction proteins. Int J Clin Exp Med 7(3):549–557Google Scholar
  21. 21.
    Oprel PP, Tuinebreijer WE, Patka P et al (2010) Combined anterior-posterior surgery versus posterior surgery for thoracolumbar burst fractures: a systematic review of the literature. Open Orthop J 4:93–100Google Scholar
  22. 22.
    Esses SI, Botsford DJ, Kostuik JP (1990) Evaluation of surgical treatment for burst fractures. Spine 15(7):667–673CrossRefGoogle Scholar
  23. 23.
    Weyns F, Rommens PM, Van Calenbergh F et al (1994) Neurological outcome after surgery for thoracolumbar fractures. A retrospective study of 93 consecutive cases, treated with dorsal instrumentation. Eur Spine J 3(5):276–281CrossRefGoogle Scholar
  24. 24.
    Stancić MF, Gregorović E, Nozica E et al (2001) Anterior decompression and fixation versus posterior reposition and semi-rigid fixation in the treatment of unstable burst thoracolumbar fracture: prospective clinical trial. Croat Med J 42(1):49–53Google Scholar
  25. 25.
    Zhuge W, Ben-Galim P, Hipp JA et al (2015) Efficacy of MRI for assessment of spinal trauma: correlation with intra-operative findings. J Spinal Disord Tech 28(4):147–151CrossRefGoogle Scholar
  26. 26.
    Hu Z, Zhou Y, Li N et al (2015) Correlations between posterior longitudinal ligament status and size of bone fragment in thoracolumbar burst fractures. Int J Clin Exp Med 8(2):2754–2759Google Scholar
  27. 27.
    Dai J, Lin H, Niu S et al (2015) Correlation of bone fragments reposition and related parameters in thoracolumbar burst fractures patients. Int J Clin Exp Med 8(7):11125–11131Google Scholar
  28. 28.
    Tan J, Shen L, Fang L et al (2015) Correlations between posterior longitudinal injury and parameters of vertebral body damage. J Surg Res 199(2):552–556CrossRefGoogle Scholar
  29. 29.
    Peng Y, Zhang L, Shi T et al (2015) Relationship between fracture-relevant parameters of thoracolumbar burst fractures and the reduction of intra-canal fracture fragment. J Orthop Surg Res 10:131CrossRefGoogle Scholar
  30. 30.
    Gertzbein SD, Crowe PJ, Fazl M, Schwartz M, Rowed D (1992) Canal clearance in burst fractures using the AO internal fixator. Spine 17:558–560CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Fei Chen
    • 1
  • Tao Shi
    • 2
    Email author
  • Yang Li
    • 2
  • Han Wang
    • 2
  • Fei Luo
    • 3
  • Tianyong Hou
    • 3
  1. 1.Department of OrthopedicsBozhou District People’s HospitalZunyi CityChina
  2. 2.Center for Orthopedics and TraumaTheThird Affiliated Hospital, Chongqing Medical UniversityChongqingChina
  3. 3.Department of OrthopedicsSouthwest Hospital, Third Military Medical UniversityChongqingChina

Personalised recommendations