Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Zukünftige intrauterine Therapien

Future intrauterine therapies



Technische Weiterentwicklungen ermöglichen es, fetale Erkrankungen immer früher zu diagnostizieren und auch zu therapieren.


Welche intrauterinen Therapien erwarten uns in der näheren Zukunft?

Material und Methode

Im Artikel werden verschiedene zukünftige fetale Therapien vorgestellt.


Aktuell laufende Studien werden zeigen, ob ein passagerer Trachealverschluss bei der fetalen Zwerchfellhernie einen Vorteil bringt und ob damit innovative Trachealverschlussmethoden zum Einsatz kommen werden. Operieren mittels HIFU („high intensity focused ultrasound“) könnte zur Gefäßverödung bei fetalen Tumoren eingesetzt werden. Mit dem Einsatz von EXTEND (EXTra-uterine Environment for Neonatal Development) wären kranke Feten einer Therapie leichter zugänglich und könnten zwischen 23–27 SSW weiter ausreifen. Fc-Rezeptor-Antikörper (AK) könnten den Transport pathologischer AK zum Feten und damit eine intrauterine Bluttransfusion bei fetaler Anämie verhindern. Fetale Stammzellen könnten zur Therapie verschiedenster fetaler Krankheiten, z. B. bei der Osteogenesis imperfecta, eingesetzt werden. Mittels der Genschere „CRISPR/CAS“ („clustered regularly interspaced short palindromic repeats“/„CRISPR-associated protein“) könnte in Zukunft eine pränatale Therapie verschiedenster genetischer Erkrankungen, wie z. B. der zystischen Fibrose oder einer β‑Thalassämie, möglich sein.


In der Zukunft werden weniger invasive Techniken wie HIFU und AK-, aber auch Stammzell- und Gentherapien ihren Einsatz in der fetalen Therapie finden.



Technical advancements enable earlier diagnosis and therapy of fetal diseases.


The aim of this article is to present future intrauterine therapies.

Material and methods

Various fetal therapies of the future will be discussed.


Studies currently underway will show whether tracheal occlusion (TO) benefits fetuses with congenital diaphragmatic hernia and, if so, whether innovative TO will be applied. Coagulation of fetal tumor vessels might be performed by high intensity focused ultrasound (HIFU). Use of the extra-uterine environment for neonatal development (EXTEND) could make fetuses with disease more accessible to treatment and enable further maturation between gestational weeks 23 and 27. Fc-receptor antibodies, which inhibit antibody transfer to the fetus, might be used instead of fetal blood transfusions for severe fetal anemia. Fetal stem cells could be used to treat a wide range of fetal diseases, including osteogenesis imperfecta. The application of the gene scissor “CRISPR/CAS” may help to treat gene defects such as cystic fibrosis and β‑thalassemia.


In the future, less invasive procedures such as HIFU and antibody therapies, as well as stem cell and gene therapies, will be implemented in fetal therapy.

This is a preview of subscription content, log in to check access.


  1. 1.

    Adzick NS, Thom EA, Spong CY et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

  2. 2.

    Alapati D, Zacharias WJ, Hartman HA et al (2019) In utero gene editing for monogenic lung disease. Sci Transl Med 11:eaav8375.

  3. 3.

    Aoki H, Ichizuka K, Ichihara M et al (2013) Application of high-intensity focused ultrasound for fetal therapy: experimental study using an animal model of lower urinary tract obstruction. J Med Ultrason 40:107–110

  4. 4.

    Bardill J, Williams SM, Shabeka U et al (2019) An Injectable reverse thermal gel for minimally invasive coverage of mouse myelomeningocele. J Surg Res 235:227–236

  5. 5.

    Caloone J, Huissoud C, Kocot A et al (2017) Non-invasive high-intensity focused ultrasound treatment of the placenta: a preliminary in-vivo study using a simian model. Ultrasound Obstet Gynecol 50:635–641

  6. 6.

    Campiglio CE, Villonio M, Dellaca RL et al (2019) An injectable, degradable hydrogel plug for tracheal occlusion in congenital diaphragmatic hernia (CDH). Mater Sci Eng C Mater Biol Appl 99:430–439

  7. 7.

    Chalphin AV, Tracy SA, Lazow SP et al (2019) A comparison between placental and amniotic mesenchymal stem cells in transamniotic stem cell therapy for experimental gastroschisis. J Pediatr Surg.

  8. 8.

    Eggenberger S, Boucard C, Schoeberlein A et al (2019) Stem cell treatment and cerebral palsy: systemic review and meta-analysis. World J Stem Cells 11:891–903

  9. 9.

    Elangovan H, Yao W, Nicolaides K (2019) A multimodality navigation system for endoscopic fetal surgery: a phantom case study for congenital diaphragmatic hernia. Surg Innov 26:27–36

  10. 10.

    Fauza DO (2018) Transamniotic stem cell therapy: a novel strategy for the prenatal management of congenital anomalies. Pediatr Res 83:241–248

  11. 11.

    Fujisaki M, Chiba T, Enosawa S et al (2010) Cardiac intervention using high-intensity focused ultrasound: creation of interatrial communication in beating heart of an anesthetized rabbit. Ultrasound Obstet Gynecol 36:607–612

  12. 12.

    Gotherstrom C, Westgren M, Shaw SW et al (2014) Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cells Transl Med 3:255–264

  13. 13.

    Gruijthuijsen C, Colchester R, Devreker A et al (2018) Haptic guidance based on all-optical ultrasound distance sensing for safer minimally invasive fetal surgery. J Med Robot Res.

  14. 14.

    Hornick MA, Mejaddam AY, Mcgovern PE et al (2019) Technical feasibility of umbilical cannulation in midgestation lambs supported by the EXTra-uterine Environment for Neonatal Development (EXTEND). Artif Organs 43(12):1154–1161. Epub 2019 Jul 28

  15. 15.

    Ling LE, Hillson JL, Tiessen RG et al (2019) M281, an anti-Fcrn antibody: pharmacodynamics, pharmacokinetics, and safety across the full range of IgG reduction in a first-in-human study. Int J Clin Pharmacol Ther 105:1031–1039

  16. 16.

    Loukogeorgakis SP, Fachin CG, Dias A et al (2019) Donor cell engineering with GSK3 inhibitor-loaded nanoparticles enhances engraftment after in utero transplantation. Blood 134:1983–1995

  17. 17.

    Morris RK, Malin GL, Quinlan-Jones E et al (2013) Percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): a randomised trial. Lancet 382:1496–1506

  18. 18.

    Papasavva P, Kleanthous M, Lederer CW (2019) Rare opportunities: CRISPR/Cas-based therapy development for rare genetic diseases. Mol Diagn Ther 23:201–222

  19. 19.

    Partridge EA, Davey MG, Hornick MA et al (2017) An extra-uterine system to physiologically support the extreme premature lamb. Nat Commun 8:15112

  20. 20.

    Peranteau WH (2014) In utero hematopoietic cell transplantation: induction of donor specific immune tolerance and postnatal transplants. Front Pharmacol 5:251

  21. 21.

    Rossidis AC, Stratigis JD, Chadwick AC et al (2018) In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat Med 24:1513–1518

  22. 22.

    Sagar R, Walther-Jallow L, David AL et al (2018) Fetal mesenchymal stromal cells: an opportunity for prenatal cellular therapy. Curr Stem Cell Rep 4:61–68

  23. 23.

    Sananes N, Regnard P, Mottet N et al (2019) Evaluation of a new balloon for fetal endoscopic tracheal occlusion in the nonhuman primate model. Prenat Diagn 39:403–408

  24. 24.

    Senat MV, Deprest J, Boulvain M et al (2004) Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med 351:136–144

  25. 25.

    Seo K, Ichizuka K, Okai T et al (2019) Treatment of twin-reversed arterial perfusion sequence using high-intensity focused ultrasound. Ultrasound Obstet Gynecol 54:128–134

  26. 26.

    Shaw CJ, Rivens I, Civale J et al (2019) Maternal and fetal cardiometabolic recovery following ultrasound-guided high-intensity focused ultrasound placental vascular occlusion. J Royal Soc Interface 16:20190013

  27. 27.

    Shieh HF, Tracy SA, Hong CR et al (2019) Transamniotic stem cell therapy (TRASCET) in a rabbit model of spina bifida. J Pediatr Surg 54:293–296

  28. 28.

    Slaghekke F, Lopriore E, Lewi L et al (2014) Fetoscopic laser coagulation of the vascular equator versus selective coagulation for twin-to-twin transfusion syndrome: an open-label randomised controlled trial. Lancet 383:2144–2151

  29. 29.

    Tatu R, Oria M, Pulliam S et al (2019) Using poly(l-lactic acid) and poly(varepsilon-caprolactone) blends to fabricate self-expanding, watertight and biodegradable surgical patches for potential fetoscopic myelomeningocele repair. J Biomed Mater Res Part B Appl Biomater 107:295–305

  30. 30.

    Wu Y, Zeng J, Roscoe BP et al (2019) Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med 25:776–783

Download references

Author information

Correspondence to Prof. Dr. Nicole Ochsenbein-Kölble.

Ethics declarations


N. Ochsenbein-Kölble gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information


R. Zimmermann, Zürich

K. Vetter, Berlin

A. Schröer, Berlin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ochsenbein-Kölble, N. Zukünftige intrauterine Therapien. Gynäkologe (2020).

Download citation


  • Kongenitale Zwerchfellhernien
  • Osteogenesis imperfecta
  • Zystische Fibrose
  • Fetale Stammzellen
  • Thalassämie


  • Hernias, diaphragmatic, congenital
  • Osteogenesis imperfecta
  • Cystic fibrosis
  • Fetal stem cells
  • Thalassemia