Advertisement

Der Gynäkologe

, Volume 52, Issue 9, pp 701–712 | Cite as

Schilddrüsenerkrankungen in der Peri- und Postmenopause

  • Antonia MondorfEmail author
  • Gesine Meyer
  • Jörg Bojunga
Frauengesundheit in der Praxis
  • 38 Downloads

Zusammenfassung

Von der mit fortschreitendem Lebensalter zunehmenden Prävalenz von Schilddrüsenerkrankungen sind Frauen deutlich häufiger betroffen als Männer. Symptome einer Schilddrüsenerkrankung sind oft unspezifisch und damit nicht ohne Weiteres von Symptomen des physiologischen Alterns und auch der Peri‑/Postmenopause abzugrenzen. Eine korrekte Diagnosestellung ist nicht zuletzt im Hinblick auf das in Peri‑/Postmenopause ohnehin erhöhte Osteoporose- und kardiovaskuläre Risiko relevant. Diskutiert werden (Differenzial‑)Diagnostik einschließlich zu berücksichtigender beeinflussender Faktoren sowie Therapie und Therapie-Monitoring auch in besonderen situativen Konstellationen.

Schlüsselwörter

Hyperthyreose Hypothyreose  Hormonersatztherapie M. Basedow Osteoporose 

Thyroid disease in perimenopausal and postmenopausal women

Abstract

The increasing prevalence of diseases of the thyroid gland with age affects women much more than men. The symptoms of thyroid gland diseases are often unspecific and therefore cannot be differentiated from symptoms of physiological aging and also the perimenopause and postmenopause without further indications. A correct diagnosis is relevant not least with respect to the already increased osteoporotic and cardiovascular risk. This article discusses the (differential) diagnostics including influencing factors, which must be taken into account as well as treatment and treatment monitoring also in particular situative constellations.

Keywords

Hyperthroidism Hypothyroidism Menopausal hormone treatment Graves’ disease Osteoporosis 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Mondorf, G. Meyer und J. Bojunga geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Bjoro T et al (2000) Prevalence of thyroid disease, thyroid dysfunction and thyroid peroxidase antibodies in a large, unselected population. The Health Study of Nord-Trondelag (HUNT). Eur J Endocrinol 143:639–647CrossRefGoogle Scholar
  2. 2.
    Faughnan M et al (1995) Screening for thyroid disease at the menopausal clinic. Clin Invest Med 18:11–18Google Scholar
  3. 3.
    Bojunga J (2015) Subklinische Schilddrüsenfunktionsstörungen in der Peri- und Postmenopause. J Gynäkol Endokrinol 25:6–11Google Scholar
  4. 4.
    Hollowell JG et al (2002) Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 87:489–499CrossRefGoogle Scholar
  5. 5.
    Mishra GD, Kuh D (2012) Health symptoms during midlife in relation to menopausal transition: British prospective cohort study. BMJ 344:e402CrossRefGoogle Scholar
  6. 6.
    Stuenkel CA et al (2015) Treatment of symptoms of the menopause: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 100:3975–4011CrossRefGoogle Scholar
  7. 7.
    de los SET, Starich GH, Mazzaferri EL (1989) Sensitivity, specificity, and cost-effectiveness of the sensitive Thyrotropin assay in the diagnosis of thyroid disease in ambulatory patients. Arch Intern Med 149:526CrossRefGoogle Scholar
  8. 8.
    Surks MI, Hollowell JG (2007) Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J Clin Endocrinol Metab 92:4575–4582CrossRefGoogle Scholar
  9. 9.
    Kratzsch J et al (2005) New reference intervals for thyrotropin and thyroid hormones based on national academy of clinical biochemistry criteria and regular ultrasonography of the thyroid. Clin Chem 51:1480–1486CrossRefGoogle Scholar
  10. 10.
    Chikunguwo S et al (2007) Influence of obesity and surgical weight loss on thyroid hormone levels. Surg Obes Relat Dis 3:631–635 (discussion 635–6)CrossRefGoogle Scholar
  11. 11.
    Bremner AP et al (2012) Age-related changes in thyroid function: a longitudinal study of a community-based cohort. J Clin Endocrinol Metab 97:1554–1562CrossRefGoogle Scholar
  12. 12.
    Surks MI, Boucai L (2010) Age- and race-based serum thyrotropin reference limits. J Clin Endocrinol Metab 95:496–502CrossRefGoogle Scholar
  13. 13.
    Coene KLM (2015) et al. Subclinical hypothyroidism: a ‘laboratory-induced’ condition? Eur J Endocrinol 173:499–505CrossRefGoogle Scholar
  14. 14.
    Li D et al (2017) Association of biotin ingestion with performance of hormone and Nonhormone assays in healthy adults. JAMA 318:1150CrossRefGoogle Scholar
  15. 15.
    Biscolla RPM, Chiamolera MI, Kanashiro I, Maciel RMB, Vieira JGH (2017) A single 10 mg oral dose of biotin interferes with thyroid function tests. Thyroid 27:1099–1100CrossRefGoogle Scholar
  16. 16.
    Gold EB et al (2013) Factors related to age at natural menopause: longitudinal analyses from SWAN. Am J Epidemiol 178:70–83CrossRefGoogle Scholar
  17. 17.
    Avis NE et al (2015) Duration of menopausal vasomotor symptoms over the menopause transition. Jama Intern Med 175:531CrossRefGoogle Scholar
  18. 18.
    Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus Progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. J Am Med Assoc 288:321–333CrossRefGoogle Scholar
  19. 19.
    Gartlehner G et al (2017) Hormone therapy for the primary prevention of chronic conditions in postmenopausal women. JAMA 318:2234CrossRefGoogle Scholar
  20. 20.
    Techniker Krankenkasse (2018) Gesundheitsreport 2018 Fit oder fertig? Erwerbsbiografien in DeutschlandGoogle Scholar
  21. 21.
    Manson JE et al (2017) Menopausal hormone therapy and long-term all-cause and cause-specific mortality. JAMA 318:927CrossRefGoogle Scholar
  22. 22.
    Canaris GJ, Manowitz NR, Mayor G, Ridgway EC (2000) The colorado thyroid disease prevalence study. Arch Intern Med 160:526CrossRefGoogle Scholar
  23. 23.
    Cooper DS, Biondi B (2012) Subclinical thyroid disease. Lancet 379:1142–1154CrossRefGoogle Scholar
  24. 24.
    Gussekloo J et al (2004) Thyroid status, disability and cognitive function, and survival in old age. JAMA 292:2591CrossRefGoogle Scholar
  25. 25.
    Simonsick EM et al (2009) Subclinical hypothyroidism and functional mobility in older adults. Arch Intern Med 169:2011CrossRefGoogle Scholar
  26. 26.
    Oppo A, Franceschi E, Atzeni F, Taberlet A, Mariotti S (2011) Effects of hyperthyroidism, hypothyroidism, and thyroid autoimmunity on female sexual function. J Endocrinol Invest 34:449–453CrossRefGoogle Scholar
  27. 27.
    Luo H et al (2018) Subclinical hypothyroidism would not lead to female sexual dysfunction in Chinese women. BMC Womens Health 18:26CrossRefGoogle Scholar
  28. 28.
    Hong H et al (2015) Subclinical hypothyroidism is not a risk factor for female sexual dysfunction in Korean middle-aged women. Thyroid 25:784–788CrossRefGoogle Scholar
  29. 29.
    Atis G et al (2010) Sexual dysfunction in women with clinical hypothyroidism and subclinical hypothyroidism. J Sex Med 7:2583–2590CrossRefGoogle Scholar
  30. 30.
    Biondi B (2007) Cardiovascular effects of mild hypothyroidism. Thyroid 17:625–630CrossRefGoogle Scholar
  31. 31.
    Hyland KA, Arnold AM, Lee JS, Cappola AR (2013) Persistent subclinical hypothyroidism and cardiovascular risk in the elderly: the cardiovascular health study. J Clin Endocrinol Metab 98:533–540CrossRefGoogle Scholar
  32. 32.
    Somwaru LL, Rariy CM, Arnold AM, Cappola AR (2012) The natural history of subclinical hypothyroidism in the elderly: the cardiovascular health study. J Clin Endocrinol Metab 97:1962–1969CrossRefGoogle Scholar
  33. 33.
    Walsh JP et al (2010) Thyrotropin and thyroid antibodies as predictors of hypothyroidism: a 13-year, longitudinal study of a community-based cohort using current immunoassay techniques. J Clin Endocrinol Metab 95:1095–1104CrossRefGoogle Scholar
  34. 34.
    Stott DJ et al (2017) Thyroid hormone therapy for older adults with subclinical hypothyroidism. N Engl J Med 376:2534–2544CrossRefGoogle Scholar
  35. 35.
    Meier C et al (2001) TSH-controlled l—Thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double blind, placebo-controlled trial (Basel thyroid study). J Clin Endocrinol Metab 86:4860–4866CrossRefGoogle Scholar
  36. 36.
    Feller M et al (2018) Association of thyroid hormone therapy with quality of life and thyroid-related symptoms in patients with subclinical hypothyroidism. JAMA 320:1349CrossRefGoogle Scholar
  37. 37.
    Korevaar TIM (2018) Randomized, controlled trials show that treatment of subclinical hypothyroidism does not improve quality of life, cognition, blood pressure, or BMI. Clinical Thyroidology 30(11):496–499.  https://doi.org/10.1089/ct.2018;30.496-499 CrossRefGoogle Scholar
  38. 38.
    Taylor PN et al (2014) Falling threshold for treatment of borderline elevated Thyrotropin levels—balancing benefits and risks. Jama Intern Med 174:32CrossRefGoogle Scholar
  39. 39.
    Mammen JS et al (2015) Thyroid hormone therapy and risk of Thyrotoxicosis in community-resident older adults: findings from the baltimore longitudinal study of aging. Thyroid 25:979–986CrossRefGoogle Scholar
  40. 40.
    Peeters RP (2017) Subclinical hypothyroidism. N Engl J Med 376:2556–2565CrossRefGoogle Scholar
  41. 41.
    Carlé A, Faber J, Steffensen R, Laurberg P, Nygaard B (2017) Hypothyroid patients encoding combined MCT10 and DIO2 gene Polymorphisms May prefer L‑T3 + L‑T4 combination treatment—data using a blind, randomized, clinical study. Eur Thyroid J 6:143–151CrossRefGoogle Scholar
  42. 42.
    Wiersinga WM (2017) Therapy of endocrine disease: T4 + T3 combination therapy: is there a true effect? Eur J Endocrinol 177:R287–R296CrossRefGoogle Scholar
  43. 43.
    Arafah BM (2001) Increased need for Thyroxine in women with hypothyroidism during estrogen therapy. N Engl J Med 344:1743–1749CrossRefGoogle Scholar
  44. 44.
    Haugen BR (2009) Drugs that suppress TSH or cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab 23:793–800CrossRefGoogle Scholar
  45. 45.
    Mariotti S et al (1993) Complex alteration of thyroid function in healthy centenarians. J Clin Endocrinol Metab 77:1130–1134Google Scholar
  46. 46.
    Haentjens P, Van Meerhaeghe A, Poppe K, Velkeniers B (2008) Subclinical thyroid dysfunction and mortality: an estimate of relative and absolute excess all-cause mortality based on time-to-event data from cohort studies. Eur J Endocrinol 159:329–341CrossRefGoogle Scholar
  47. 47.
    Sawin CT et al (1994) Low serum Thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med 331:1249–1252CrossRefGoogle Scholar
  48. 48.
    Parle JV, Maisonneuve P, Sheppard MC, Boyle P, Franklyn JA (2001) Prediction of all-cause and cardiovascular mortality in elderly people from one low serum thyrotropin result: a 10-year cohort study. Lancet 358:861–865CrossRefGoogle Scholar
  49. 49.
    Abe E et al (2003) TSH is a negative regulator of skeletal remodeling. Cell 115:151–162CrossRefGoogle Scholar
  50. 50.
    De Mingo Dominguez ML et al (2018) Low trabecular bone score in postmenopausal women with differentiated thyroid carcinoma after long-term TSH suppressive therapy. Endocrine 62:166–173CrossRefGoogle Scholar
  51. 51.
    Leader A et al (2014) Thyrotropin levels within the lower normal range are associated with an increased risk of hip fractures in euthyroid women, but not men, over the age of 65 years. J Clin Endocrinol Metab 99:2665–2673CrossRefGoogle Scholar
  52. 52.
    Blum MR et al (2015) Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313:2055–2065CrossRefGoogle Scholar
  53. 53.
    Tan ZS et al (2008) Thyroid function and the risk of alzheimer disease<subtitle>the Framingham study</subtitle&gt. Arch Intern Med 168:1514CrossRefGoogle Scholar
  54. 54.
    Díez JJ (2003) Hyperthyroidism in patients older than 55 years: an analysis of the etiology and management. Gerontology 49:316–323CrossRefGoogle Scholar
  55. 55.
    Schouten BJ, Brownlie BEW, Frampton CM, Turner JG (2011) Subclinical thyrotoxicosis in an outpatient population—predictors of outcome. Clin Endocrinol (oxf) 74:257–261CrossRefGoogle Scholar
  56. 56.
    Das G et al (2012) Serum thyrotrophin at baseline predicts the natural course of subclinical hyperthyroidism. Clin Endocrinol (oxf) 77:146–151CrossRefGoogle Scholar
  57. 57.
    Bahn RS et al (2011) Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Endocr Pract 17:456–520CrossRefGoogle Scholar
  58. 58.
    Azizi F, Malboosbaf R (2017) Long-term Antithyroid drug treatment: a systematic review and meta-analysis. Thyroid 27:1223–1231CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Schwerpunkt Endokrinologie, Diabetologie, Ernährungsmedizin, Medizinische Klinik IUniversitätsklinikum FrankfurtFrankfurt am MainDeutschland

Personalised recommendations