Advertisement

Geburtshilfliche Risiken nach assistierter Reproduktion

  • Sebastian GreweEmail author
  • Christoph Grewe
  • Klaus Diedrich
Leitthema
  • 20 Downloads

Zusammenfassung

Hintergrund

Der Anteil Neugeborener nach assistierter Reproduktion (ART) nimmt in den letzten Jahren stetig zu und beträgt aktuell in Deutschland ca. 3 %. Geburtshilfliche Risiken und neonatales Outcome nach ART stehen daher zunehmend im Fokus aktueller Studien.

Fragestellung

Besteht hinsichtlich Schwangerschaftskomplikationen und neonatalen Risiken eine erhöhte Inzidenz nach ART?

Material und Methoden

Der Artikel basiert auf einer ausführlichen Literaturrecherche unter Verwendung medizinischer Datenbanken (u. a. PubMed).

Ergebnisse

Nach ART besteht ein erhöhtes Risiko für u. a. Präeklampsie, Frühgeburtlichkeit, niedriges Geburtsgewicht und Fehlbildungen im Vergleich zu spontan konzipierten Graviditäten. Da insbesondere die erhöhte Rate an Mehrlingsschwangerschaften nach ART als wesentlicher Risikofaktor angesehen wird, sollte nach individueller Abwägung zunehmend ein Single-embryo-Transfer (SET) angestrebt werden. In aktuellen Studien tritt die Subfertilität per se als unabhängiger Risikofaktor in den Vordergrund, auch wenn ein Kausalzusammenhang zwischen extrakorporalen Techniken, Schwangerschaftskomplikationen und perinatalem Risiko nicht ausgeschlossen werden kann.

Schlussfolgerung

ART-induzierte Graviditäten sind generell als Risikoschwangerschaften einzustufen, die eine engmaschige Überwachung erfordern. Sub- bzw. infertile Paare müssen vor Beginn einer Kinderwunschbehandlung über die möglichen Risiken aufgeklärt werden. Sowohl das Verfahren der ART als auch die Subfertilität an sich haben, wenn auch in unterschiedlichem Ausmaß, einen synergistischen, additiven Effekt bezogen auf die Inzidenz geburtshilflicher Risiken.

Schlüsselwörter

Perinatale Risiken Präeklampsie Subfertilität Single-embryo-Transfer Präimplantationsdiagnostik 

Obstetric risks after assisted reproduction

Abstract

Background

The proportion of neonates born after assisted reproductive technology (ART) has been constantly rising in the last few years and nowadays represents 3% of births in Germany. Therefore, clinical trials are increasingly focusing on obstetric risks and neonatal outcome following ART.

Objective

Is there an increased incidence of complications during pregnancy and neonatal risks following ART?

Material and method

This article is based on an extensive literature search in medical databases including PubMed.

Results

Following ART there is an increased risk for e.g. pre-eclampsia, prematurity, low birth weight and malformations compared to naturally conceived pregnancies. As the increased rate of multiple pregnancies represents a substantial risk factor following ART, single embryo transfer should be strived for after consideration of the individual circumstances. Current clinical trials focus on subfertility per se as an independent risk factor, even though a causal relationship between extracorporeal techniques, pregnancy complications and perinatal risks cannot be excluded.

Conclusion

Pregnancies following ART are generally classified as high risk pregnancies and should be closely monitored. Couples suffering from subfertility or infertility should be informed about possible risks before starting fertility treatment. The procedure of ART as well as subfertility per se have a synergistic and additive effect in relation to the incidence of obstetric risks, albeit to varying degrees.

Keywords

Perinatal risks Pre-eclampsia Subfertility Single embryo transfer Preimplantation diagnostics 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Grewe, C. Grewe und K. Diedrich geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    AbdelHafez FF, Desai N, Abou-Setta AM, Falcone T, Goldfarb J (2010) Slow freezing, vitrification and ultra-rapid freezing of human embryos: a systematic review and meta-analysis. Reprod Biomed Online 20:209–222CrossRefGoogle Scholar
  2. 2.
    Adams DH, Clark RA, Davies MJ, de Lacey S (2016) A meta-analysis of neonatal health outcomes from oocyte donation. J Dev Orig Health Dis 7:257–272CrossRefGoogle Scholar
  3. 3.
    Berntsen S, Soderstrom-Anttila V, Wennerholm UB, Laivuori H, Loft A et al (2019) The health of children conceived by ART: ‘the chicken or the egg?’. Hum Reprod Update 25:137–158CrossRefGoogle Scholar
  4. 4.
    Blazquez A, Garcia D, Rodriguez A, Vassena R, Figueras F, Vernaeve V (2016) Is oocyte donation a risk factor for preeclampsia? A systematic review and meta-analysis. J Assist Reprod Genet 33:855–863CrossRefGoogle Scholar
  5. 5.
    Chang HJ, Lee JR, Jee BC, Suh CS, Kim SH (2009) Impact of blastocyst transfer on offspring sex ratio and the monozygotic twinning rate: a systematic review and meta-analysis. Fertil Steril 91:2381–2390CrossRefGoogle Scholar
  6. 6.
    Chason RJ, Csokmay J, Segars JH, DeCherney AH, Armant DR (2011) Environmental and epigenetic effects upon preimplantation embryo metabolism and development. Trends Endocrinol Metab 22:412–420CrossRefGoogle Scholar
  7. 7.
    Cromi A, Candeloro I, Marconi N, Casarin J, Serati M et al (2016) Risk of peripartum hysterectomy in births after assisted reproductive technology. Fertil Steril 106:623–628CrossRefGoogle Scholar
  8. 8.
    Dar S, Lazer T, Shah PS, Librach CL (2014) Neonatal outcomes among singleton births after blastocyst versus cleavage stage embryo transfer: a systematic review and meta-analysis. Hum Reprod Update 20:439–448CrossRefGoogle Scholar
  9. 9.
    De Vos A, Janssens R, Van de Velde H, Van de Haentjens P, Van de Bonduelle M et al (2015) The type of culture medium and the duration of in vitro culture do not influence birthweight of ART singletons. Hum Reprod 30:20–27CrossRefGoogle Scholar
  10. 10.
    DIR (2017) Deutsches IVF Register, Jahrbuch Reproduktionsmedizin und Endokrinologie 15. Jahrgang 201, Modifizierter Nachdruck aus Nummer 5–6:219–49Google Scholar
  11. 11.
    Ginstrom Ernstad E, Bergh C, Khatibi A, Kallen KB, Westlander G et al (2016) Neonatal and maternal outcome after blastocyst transfer: a population-based registry study. Am J Obstet Gynecol 214(378):e1–e10Google Scholar
  12. 12.
    Goisis A, Remes H, Martikainen P, Klemetti R, Myrskyla M (2019) Medically assisted reproduction and birth outcomes: a within-family analysis using Finnish population registers. Lancet 393:1225–1232CrossRefGoogle Scholar
  13. 13.
    Grace KS, Sinclair KD (2009) Assisted reproductive technology, epigenetics, and long-term health: a developmental time bomb still ticking. Semin Reprod Med 27:409–416CrossRefGoogle Scholar
  14. 14.
    Guerif F, Le Gouge A, Giraudeau B, Poindron J, Bidault R et al (2007) Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos. Hum Reprod 22:1973–1981CrossRefGoogle Scholar
  15. 15.
    Helmerhorst FM, Perquin DA, Donker D, Keirse MJ (2004) Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ 328:261CrossRefGoogle Scholar
  16. 16.
    Ishihara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson GD (2014) Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril 101:128–133CrossRefGoogle Scholar
  17. 17.
    Jauniaux E, Ben-Ami I, Maymon R (2013) Do assisted-reproduction twin pregnancies require additional antenatal care? Reprod Biomed Online 26:107–119CrossRefGoogle Scholar
  18. 18.
    Jeve YB, Potdar N, Opoku A, Khare M (2016) Donor oocyte conception and pregnancy complications: a systematic review and meta-analysis. BJOG 123:1471–1480CrossRefGoogle Scholar
  19. 19.
    Kalra SK, Ratcliffe SJ, Barnhart KT, Coutifaris C (2012) Extended embryo culture and an increased risk of preterm delivery. Obstet Gynecol Clin North Am 120:69–75Google Scholar
  20. 20.
    Kuwayama M, Vajta G, Kato O, Leibo SP (2005) Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 11:300–308CrossRefGoogle Scholar
  21. 21.
    Nationale Akademie der Wissenschaften Leopoldina, Union der deutschen Akademien der Wissenschaften (2019) Fortpflanzungsmedizin in Deutschland – für eine zeitgemäße Gesetzgebung. Halle (Saale)Google Scholar
  22. 22.
    Ludwig AK, Ludwig M (2018) Wie geht es den Kindern nach reproduktionsmedizinischer Behandlung. Gynäkologe 51(8):653–657CrossRefGoogle Scholar
  23. 23.
    Maheshwari A, Kalampokas T, Davidson J, Bhattacharya S (2013) Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of blastocyst-stage versus cleavage-stage embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril 100:1615–1621.e10CrossRefGoogle Scholar
  24. 24.
    Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S (2012) Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril 98:368–377.e9CrossRefGoogle Scholar
  25. 25.
    McDonald S, Murphy K, Beyene J, Ohlsson A (2005) Perinatal outcomes of in vitro fertilization twins: a systematic review and meta-analyses. Am J Obstet Gynecol 193:141–152CrossRefGoogle Scholar
  26. 26.
    McLernon DJ, Harrild K, Bergh C, Davies MJ, de Neubourg D et al (2010) Clinical effectiveness of elective single versus double embryo transfer: meta-analysis of individual patient data from randomised trials. BMJ 341:c6945CrossRefGoogle Scholar
  27. 27.
    Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A (2012) Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update 18:485–503CrossRefGoogle Scholar
  28. 28.
    Pecks U, Maass N, Neulen J (2011) Oocyte donation: a risk factor for pregnancy-induced hypertension: a meta-analysis and case series. Dtsch Arztebl Int 108:23–31PubMedPubMedCentralGoogle Scholar
  29. 29.
    Pinborg A, Lidegaard O, la Cour Freiesleben N, Andersen AN (2005) Consequences of vanishing twins in IVF/ICSI pregnancies. Hum Reprod 20:2821–2829CrossRefGoogle Scholar
  30. 30.
    Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K et al (2013) Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update 19:87–104CrossRefGoogle Scholar
  31. 31.
    Qin J, Liu X, Sheng X, Wang H, Gao S (2016) Assisted reproductive technology and the risk of pregnancy-related complications and adverse pregnancy outcomes in singleton pregnancies: a meta-analysis of cohort studies. Fertil Steril 105:73–85.e6CrossRefGoogle Scholar
  32. 32.
    Qin J, Wang H, Sheng X, Liang D, Tan H, Xia J (2015) Pregnancy-related complications and adverse pregnancy outcomes in multiple pregnancies resulting from assisted reproductive technology: a meta-analysis of cohort studies. Fertil Steril 103:1492–1508.e7CrossRefGoogle Scholar
  33. 33.
    Qin JB, Wang H, Sheng X, Xie Q, Gao S (2016) Assisted reproductive technology and risk of adverse obstetric outcomes in dichorionic twin pregnancies: a systematic review and meta-analysis. Fertil Steril 105:1180–1192CrossRefGoogle Scholar
  34. 34.
    Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ et al (2017) Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update 23:139–155PubMedGoogle Scholar
  35. 35.
    Rizos D, Lonergan P, Boland MP, Arroyo-Garcia R, Pintado B et al (2002) Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol Reprod 66:589–595CrossRefGoogle Scholar
  36. 36.
    Sazonova A, Kallen K, Thurin-Kjellberg A, Wennerholm UB, Bergh C (2012) Obstetric outcome in singletons after in vitro fertilization with cryopreserved/thawed embryos. Hum Reprod 27:1343–1350CrossRefGoogle Scholar
  37. 37.
    Storgaard M, Loft A, Bergh C, Wennerholm UB, Soderstrom-Anttila V et al (2017) Obstetric and neonatal complications in pregnancies conceived after oocyte donation: a systematic review and meta-analysis. BJOG 124:561–572CrossRefGoogle Scholar
  38. 38.
    Vajta G, Kuwayama M (2006) Improving cryopreservation systems. Theriogenology 65:236–244CrossRefGoogle Scholar
  39. 39.
    Wang YA, Sullivan EA, Healy DL, Black DA (2009) Perinatal outcomes after assisted reproductive technology treatment in Australia and New Zealand: single versus double embryo transfer. Med J Aust 190:234–237PubMedGoogle Scholar
  40. 40.
    Wennerholm UB, Henningsen AK, Romundstad LB, Bergh C, Pinborg A et al (2013) Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod 28:2545–2553CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Sebastian Grewe
    • 1
    Email author
  • Christoph Grewe
    • 2
  • Klaus Diedrich
    • 1
  1. 1.Facharzt-Zentrum für Kinderwunsch, Pränatale Medizin, Endokrinologie und OsteologieAmedesHamburgDeutschland
  2. 2.Kinderwunsch BremenBremenDeutschland

Personalised recommendations