Advertisement

Radiochemotherapie oder operative Therapie bei Zervixkarzinom – was und zu welcher Zeit?

  • Simone MarnitzEmail author
  • Dennis Akuoma-Boateng
  • Jan Herter
Leitthema
  • 12 Downloads

Zusammenfassung

Hintergrund

Auch wenn die Inzidenz des Zervixkarzinoms trotz mangelhafter Vakzinierungsrate in Deutschland langfristig weiter sinken wird, ist das Zervixkarzinom mit weltweit über 500.000 Neuerkrankungen pro Jahr nach wie vor ein globales Gesundheitsproblem.

Fragestellung

Darstellung des stadienabhängigen Stellenwertes der primären und adjuvanten Radiochemotherapie bei Zervixkarzinomen.

Material und Methode

Es erfolgte eine ausführliche Literaturrecherche zu Therapieoptionen bei Zervixkarzinomen in verschiedenen Stadien. Insbesondere die Wahl der Therapieoptionen primäre Hysterektomie (HE) gefolgt von Radiochemotherapie, primäre kombinierte Radiochemotherapie und neoadjuvante Chemotherapie gefolgt von der HE vs. Radiochemotherapie wird vor dem Hintergrund der onkologischen Ergebnisse, der therapiebedingten Toxizität und der Lebensqualität analysiert.

Ergebnisse

Die radikale HE sollte nach geeigneter Selektion erfolgen, eine adjuvante Radiochemotherapie sollte vermieden werden. Die sog. trimodale Therapie trägt zu einer Verdopplung der therapieassoziierten Langzeitnebenwirkungen bei. Die neoadjuvante Chemotherapie bei lokal fortgeschrittenen Tumoren sollte im Rahmen der ARO(Arbeitsgemeinschaft Radiologische Onkologie)-AGO(Arbeitsgemeinschaft Gynäkologische Onkologie)-NOGGO(Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie)-Studie durchgeführt werden. Im Sinne der Lebensqualität junger Patientinnen sollte an eine Ovariopexie vor Radiochemotherapie gedacht werden. Patientinnen mit histologisch gesicherten paraaortalen Metastasen profitieren möglicherweise von einer systematischen Lymphonodektomie vor einer EFRT („extended field radiation therapy“).

Schlussfolgerung

Vernetzung, Aufklärung und Therapie durch ein erfahrenes, interdisziplinäres Team sollten selbstverständlich werden.

Schlüsselwörter

Primäre Radiochemotherapie Adjuvante Radiochemotherapie Neoadjuvante Chemotherapie Lymphonodektomie Lebensqualität 

Radiochemotherapy or surgery for cervical cancer—what and when?

Abstract

Background

Although the incidence of cervical cancer in Germany will continue to decline in the long term despite poor vaccination rates, it remains a global health problem with more than 500,000 new cases worldwide.

Objective

Portrayal of the stage-dependent significance of primary and adjuvant chemoradiation in cervical cancer patients.

Materials and methods

A detailed literature review regarding treatment options for different stages of cervical cancer was conducted. In particular, the selection of the treatment options primary hysterectomy (HE) followed by radiochemotherapy, primary combined radiochemotherapy and neoadjuvant chemotherapy followed by HE versus radiochemotherapy was analyzed for oncologic result, treatment-related toxicity, and quality of life.

Results

Radical HE should be performed in appropriately selected patients and adjuvant radiochemotherapy should be avoided. So-called trimodal therapy contributes to a doubling of long-term side effects of therapy. Neoadjuvant chemotherapy for locally advanced tumors should be performed in the context of the open ARO (Arbeitsgemeinschaft Radiologische Onkologie)-AGO (Arbeitsgemeinschaft Gynäkologische Onkologie)-NOGGO (Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie) study. Concerning the quality of life in younger patients, ovariopexy should be considered before radiochemotherapy. Patients with histologically confirmed para-aortic metastases may benefit from a systematic lymphadenectomy before extended-field radiochemotherapy.

Conclusion

Interdisciplinary coordination, patient information, and treatment by an experienced team should become a matter of course.

Keywords

Primary chemoradiotherapy Adjuvant chemoradiotherapy Neoadjuvant chemotherapy Lymphonodectomy Quality of life 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Marnitz, D. Akuoma-Boateng und J. Herter geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    S3-Leitlinie Diagnostik, T.u.N.d.P.m.Z., www.awmf.de. AWMF-Registernummer 032/033OL, Gültig bis 31. Okt. 2019
  2. 2.
    Cibula D et al (2018) The European society of Gynaecological oncology/European society for radiotherapy and oncology/European society of pathology guidelines for the management of patients with cervical cancer. Int J Gynecol Cancer 28(4):641–655CrossRefGoogle Scholar
  3. 3.
    Marth C et al (2018) Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 29:262–262CrossRefGoogle Scholar
  4. 4.
    Choi HJ et al (2006) Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer 106(4):914–922CrossRefGoogle Scholar
  5. 5.
    Chung HH et al (2010) Role of magnetic resonance imaging and positron emission tomography/computed tomography in preoperative lymph node detection of uterine cervical cancer. Am J Obstet Gynecol 203(2):156 e1–156 e5CrossRefGoogle Scholar
  6. 6.
    Mitchell DG et al (2009) Early invasive cervical cancer: MRI and CT predictors of lymphatic metastases in the ACRIN 6651/GOG 183 intergroup study. Gynecol Oncol 112(1):95–103CrossRefGoogle Scholar
  7. 7.
    Marnitz S et al (2016) Role of surgical versus clinical staging in Chemoradiated FIGO stage IIB-IVA cervical cancer patients—acute toxicity and treatment quality of the uterus-11 Multicenter phase III intergroup trial of the German radiation oncology group and the gynecologic cancer group. Int J Radiat Oncol Biol Phys 94(2):243–253CrossRefGoogle Scholar
  8. 8.
    Marnitz S et al (2007) Stage-adjusted chemoradiation in cervical cancer after transperitoneal laparoscopic staging. Strahlenther Onkol 183(9):473–478CrossRefGoogle Scholar
  9. 9.
    Marnitz S et al (2005) Is there a benefit of pretreatment laparoscopic transperitoneal surgical staging in patients with advanced cervical cancer? Gynecol Oncol 99(3):536–544CrossRefGoogle Scholar
  10. 10.
    Kohler C et al (2015) Perioperative morbidity and rate of upstaging after laparoscopic staging for patients with locally advanced cervical cancer: results of a prospective randomized trial. Am J Obstet Gynecol 213(4):503 e1–503 e7CrossRefGoogle Scholar
  11. 11.
    Tsunoda AT et al (2017) Incidence of Histologically proven pelvic and para-aortic lymph node metastases and rate of upstaging in patients with locally advanced cervical cancer: results of a prospective randomized trial. Oncology 92(4):213–220CrossRefGoogle Scholar
  12. 12.
    Yagur Y et al (2018) Postoperative radiation rates in stage IIA1 cervical cancer: is surgical treatment justified? An Israeli gynecologic oncology group study. Gynecol Oncol 150(2):288–292CrossRefGoogle Scholar
  13. 13.
    Landoni F et al (1997) Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet 350(9077):535–540CrossRefGoogle Scholar
  14. 14.
    Kong TW et al (2016) Treatment outcomes in patients with FIGO stage IB-IIA cervical cancer and a focally disrupted cervical stromal ring on magnetic resonance imaging: a propensity score matching study. Gynecol Oncol 143(1):77–82CrossRefGoogle Scholar
  15. 15.
    de Foucher T, Bendifallah S, Ouldamer L, Bricou A, Lavoue V, Varinot J, Canlorbe G, Carcopino X, Raimond E, Monnier L, Graesslin O, Touboul C, Collinet P, Neveu ME, Huchon C, Daraï E, Ballester M; Groupe de Recherche Francogyn, France (2018) Patterns of recurrence and prognosis in locally advanced FIGO stage IB2 to IIB cervical cancer: Retrospective multicentre study from the FRANCOGYN group. Eur J Surg Oncol 45(4):659–665.  https://doi.org/10.1016/j.ejso.2018.11.014 CrossRefPubMedGoogle Scholar
  16. 16.
    Lin AJ et al (2019) Intensity modulated radiation therapy and image-guided adapted Brachytherapy for cervix cancer. Int J Radiat Oncol Biol Phys 103(5):1088–1097CrossRefGoogle Scholar
  17. 17.
    Angioli R et al (2012) Neoadjuvant chemotherapy plus radical surgery followed by chemotherapy in locally advanced cervical cancer. Gynecol Oncol 127(2):290–296CrossRefGoogle Scholar
  18. 18.
    Gonzalez-Martin A et al (2008) The current role of neoadjuvant chemotherapy in the management of cervical carcinoma. Gynecol Oncol 110(3 Suppl 2):36–40CrossRefGoogle Scholar
  19. 19.
    Benedetti Panici P et al (2007) An update in neoadjuvant chemotherapy in cervical cancer. Gynecol Oncol 107(1 Suppl 1):20–22CrossRefGoogle Scholar
  20. 20.
    Benedetti-Panici P et al (2002) Neoadjuvant chemotherapy and radical surgery versus exclusive radiotherapy in locally advanced squamous cell cervical cancer: results from the Italian multicenter randomized study. J Clin Oncol 20(1):179–188CrossRefGoogle Scholar
  21. 21.
    Benedetti Panici P et al (2015) Dose-dense Neoadjuvant chemotherapy plus radical surgery in locally advanced cervical cancer: a phase II study. Oncology 89(2):103–110CrossRefGoogle Scholar
  22. 22.
    Gupta S, Maheshwari A, Parab P, Mahantshetty U, Hawaldar R, Sastri Chopra S, Kerkar R, Engineer R, Tongaonkar H, Ghosh J, Gulia S, Kumar N, Shylasree TS, Gawade R, Kembhavi Y, Gaikar M, Menon S, Thakur M, Shrivastava S, Badwe R (2018) Neoadjuvant Chemotherapy Followed by Radical Surgery Versus Concomitant Chemotherapy and Radiotherapy in Patients With Stage IB2, IIA, or IIB Squamous Cervical Cancer: A Randomized Controlled Trial. J Clin Oncol 36(16):1548–1555.  https://doi.org/10.1200/JCO.2017.75.9985 CrossRefPubMedGoogle Scholar
  23. 23.
    Landoni F et al (2014) Is there a role for postoperative treatment in patients with stage Ib(2)-IIb cervical cancer treated with neo-adjuvant chemotherapy and radical surgery? An Italian multicenter retrospective study. Gynecol Oncol 132(3):611–617CrossRefGoogle Scholar
  24. 24.
    Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol 26(35):5802–5812.  https://doi.org/10.1200/JCO.2008.16.4368
  25. 25.
    Nagy VM et al (2012) Randomized phase 3 trial comparing 2 cisplatin dose schedules in 326 patients with locally advanced squamous cell cervical carcinoma: long-term follow-up. Int J Gynecol Cancer 22(9):1538–1544PubMedGoogle Scholar
  26. 26.
    Marnitz S et al (2012) Validity of laparoscopic staging to avoid adjuvant chemoradiation following radical surgery in patients with early cervical cancer. Oncology 83(6):346–353CrossRefGoogle Scholar
  27. 27.
    Lin JF et al (2014) Impact of facility volume on therapy and survival for locally advanced cervical cancer. Gynecol Oncol 132(2):416–422CrossRefGoogle Scholar
  28. 28.
    Mazeron R et al (2015) Impact of treatment time and dose escalation on local control in locally advanced cervical cancer treated by chemoradiation and image-guided pulsed-dose rate adaptive brachytherapy. Radiother Oncol 114(2):257–263CrossRefGoogle Scholar
  29. 29.
    Shaverdian N et al (2013) Effects of treatment duration during concomitant chemoradiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys 86(3):562–568CrossRefGoogle Scholar
  30. 30.
    Showalter TN et al (2016) Determinants of quality care and mortality for patients with locally advanced cervical cancer in Virginia. Medicine (Baltimore) 95(8):e2913CrossRefGoogle Scholar
  31. 31.
    Smith GL, Eifel PJ (2014) Trends in the utilization of brachytherapy in cervical cancer in the United States. Int J Radiat Oncol Biol Phys 88(2):459–460CrossRefGoogle Scholar
  32. 32.
    Smith GL et al (2015) Trends in the quality of treatment for patients with intact cervical cancer in the united states, 1999 through 2011. Int J Radiat Oncol Biol Phys 92(2):260–267CrossRefGoogle Scholar
  33. 33.
    Hwang JH et al (2012) Association between the location of transposed ovary and ovarian function in patients with uterine cervical cancer treated with (postoperative or primary) pelvic radiotherapy. Fertil Steril 97(6):1387CrossRefGoogle Scholar
  34. 34.
    Han SS et al (2011) Underuse of ovarian transposition in reproductive-aged cancer patients treated by primary or adjuvant pelvic irradiation. J Obstet Gynaecol Res 37(7):825–829CrossRefGoogle Scholar
  35. 35.
    Gubbala K et al (2014) Outcomes of ovarian transposition in gynaecological cancers; a systematic review and meta-analysis. J Ovarian Res 7:69CrossRefGoogle Scholar
  36. 36.
    Gracia CR et al (2012) Impact of cancer therapies on ovarian reserve. Fertil Steril 97(1):134–U197CrossRefGoogle Scholar
  37. 37.
    Ghadjar P et al (2015) Modern radiation therapy and potential fertility preservation strategies in patients with cervical cancer undergoing chemoradiation. Radiat Oncol 10:50CrossRefGoogle Scholar
  38. 38.
    Atri M et al (2016) Utility of PET-CT to evaluate retroperitoneal lymph node metastasis in advanced cervical cancer: results of ACRIN6671/GOG0233 trial. Gynecol Oncol 142(3):413–419CrossRefGoogle Scholar
  39. 39.
    Ramirez PT et al (2011) Laparoscopic extraperitoneal para-aortic lymphadenectomy in locally advanced cervical cancer: a prospective correlation of surgical findings with positron emission tomography/computed tomography findings. Cancer 117(9):1928–1934CrossRefGoogle Scholar
  40. 40.
    Gouy S et al (2012) Nodal-staging surgery for locally advanced cervical cancer in the era of PET. Lancet Oncol 13(5):E212–E220CrossRefGoogle Scholar
  41. 41.
    Frumovitz M et al (2014) Lymphadenectomy in locally advanced cervical cancer study (LiLACS): phase III clinical trial comparing surgical with radio logic staging in patients with stages IB2-IVA cervical cancer. J Minim Invasive Gynecol 21(1):3–8CrossRefGoogle Scholar
  42. 42.
    Rotman M et al (1995) Prophylactic extended-field irradiation of para-aortic lymph nodes in stages IIB and bulky IB and IIA cervical carcinomas. Ten-year treatment results of RTOG 79–20. JAMA 274(5):387–393CrossRefGoogle Scholar
  43. 43.
    Haie C et al (1988) Is prophylactic para-aortic irradiation worthwhile in the treatment of advanced cervical carcinoma? Results of a controlled clinical trial of the EORTC radiotherapy group. Radiother Oncol 11(2):101–112CrossRefGoogle Scholar
  44. 44.
    Yan K et al (2018) Predicting severe hematologic toxicity from extended-field chemoradiation of para-aortic nodal metastases from cervical cancer. Pract Radiat Oncol 8(1):13–19CrossRefGoogle Scholar
  45. 45.
    Wang W, Liu X, Meng Q, Zhang F, Hu K (2018) Prophylactic extended-field irradiation for patients with cervical cancer treated with concurrent chemoradiotherapy: a propensity-score matching analysis. Int J Gynecol Cancer 28(8):1584–1591.  https://doi.org/10.1097/IGC.0000000000001344 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Manders DB, Sims TT, Bailey A, Hwang L, Richardson DL, Miller DS, Kehoe SM, Albuquerque KV, Lea JS (2018) The significance of para-aortic nodal size and the role of adjuvant systemic chemotherapy in cervical cancer: an institutional experience. Am J Clin Oncol 41(12):1225–1230.  https://doi.org/10.1097/COC.0000000000000458 CrossRefPubMedGoogle Scholar
  47. 47.
    Oh J et al (2017) Prophylactic extended-field irradiation with concurrent chemotherapy for pelvic lymph node-positive cervical cancer. Radiat Oncol J 35(4):349–358CrossRefGoogle Scholar
  48. 48.
    Lee J et al (2017) Prophylactic lower para-aortic irradiation using intensity-modulated radiotherapy mitigates the risk of para-aortic recurrence in locally advanced cervical cancer: a 10-year institutional experience. Gynecol Oncol 146(1):20–26CrossRefGoogle Scholar
  49. 49.
    Chantalat E et al (2015) Cervical cancer with paraaortic involvement: do patients truly benefit from tailored chemoradiation therapy? A retrospective study on 8 French centers. Eur J Obstet Gynecol Reprod Biol 193:118–122CrossRefGoogle Scholar
  50. 50.
    Marnitz S et al (2015) Extended field chemoradiation for cervical cancer patients with histologically proven para-aortic lymph node metastases after laparaoscopic lymphadenectomy. Strahlenther Onkol 191(5):421–428CrossRefGoogle Scholar
  51. 51.
    Yoon HI, Cha J, Keum KC, Lee HY, Nam EJ, Kim SW, Kim S, Kim YT, Kim GE, Kim YB (2015) Treatment outcomes of extended-field radiation therapy and the effect of concurrent chemotherapy on uterine cervical cancer with para-aortic lymph node metastasis. Radiat Oncol 10:18.  https://doi.org/10.1186/s13014-014-0320-5 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Moore K (2008) Vesicovaginal fistula formation in patients with stage IVA cervical carcinoma-Response. Gynecol Oncol 109(3):429–430CrossRefGoogle Scholar
  53. 53.
    Dessole M, Petrillo M, Lucidi A, Naldini A, Rossi M, De Iaco P, Marnitz S, Sehouli J, Scambia G, Chiantera V (2016) Quality of life in women after pelvic exenteration for gynecological malignancies: a multicentric study. Int J Gynecol Cancer 28(2):267–273.  https://doi.org/10.1097/IGC.0000000000000612 CrossRefGoogle Scholar
  54. 54.
    Chiantera V et al (2014) Survival after curative pelvic exenteration for primary or recurrent cervical cancer: a retrospective multicentric study of 167 patients. Int J Gynecol Cancer 24(5):916–922CrossRefGoogle Scholar
  55. 55.
    Tangjitgamol S et al (2014) Adjuvant chemotherapy after concurrent chemoradiation for locally advanced cervical cancer. Cochrane Database Syst Rev 12:CD10401Google Scholar
  56. 56.
    Seki T, Tanabe H, Nagata C, Suzuki J, Suzuki K, Takano H, Isonishi S, Ochiai K, Takakura S, Okamoto A (2016) Adjuvant therapy after radical surgery for stage IB-IIB cervical adenocarcinoma with risk factors. Jpn J Clin Oncol 47(1):32–38.  https://doi.org/10.1093/jjco/hyw145 CrossRefPubMedGoogle Scholar
  57. 57.
    Mahmoud O et al (2016) Can chemotherapy boost the survival benefit of adjuvant radiotherapy in early stage cervical cancer with intermediate risk factors? A population based study. Gynecol Oncol 143(3):539–544CrossRefGoogle Scholar
  58. 58.
    Duenas-Gonzalez A et al (2011) Phase III, open-label, randomized study comparing concurrent gemcitabine plus cisplatin and radiation followed by adjuvant gemcitabine and cisplatin versus concurrent cisplatin and radiation in patients with stage IIB to IVA carcinoma of the cervix. J Clin Oncol 29(13):1678–1685CrossRefGoogle Scholar
  59. 59.
    Chen L et al (2018) Concurrent immune checkpoint inhibitors and Stereotactic Radiosurgery for brain metastases in non-small cell lung cancer, melanoma, and renal cell carcinoma. Int J Radiat Oncol Biol Phys 100(4):916–925CrossRefGoogle Scholar
  60. 60.
    Papadopoulos KP et al (2016) A first-in-human study of REGN2810, a monoclonal, fully human antibody to programmed death-1 (PD-1), in combination with immunomodulators including hypofractionated radiotherapy (hfRT). J Clin Oncol 34:15Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Simone Marnitz
    • 1
    • 2
    Email author
  • Dennis Akuoma-Boateng
    • 1
    • 2
  • Jan Herter
    • 1
    • 2
    • 3
  1. 1.Medizinische Fakultät, Klinik und Poliklinik für Radioonkologie, CyberKnife- und StrahlentherapieUniversität KölnKölnDeutschland
  2. 2.Centrum für Integrierte Onkologie Köln-BonnKölnDeutschland
  3. 3.Translationale Radioonkologie, Klinik und Poliklinik für Radioonkologie, CyberKnife- und StrahlentherapieUniversitätsklinik KölnKölnDeutschland

Personalised recommendations