Advertisement

Der Gynäkologe

, Volume 52, Issue 4, pp 295–304 | Cite as

Endokrine Therapie des metastasierten Mammakarzinoms

  • Arkadius Polasik
  • Jens Huober
  • Wolfgang Janni
  • Sophia HuesmannEmail author
CME Zertifizierte Fortbildung
  • 115 Downloads

Zusammenfassung

Beim HR(Hormonrezeptor)-positivem metastasierten Mammakarzinom (MBC) gilt die endokrine Therapie (ET) mit ihrem im Vergleich zur Chemotherapie günstigeren Nebenwirkungsprofil als Therapie der ersten Wahl, sofern die Tumorlast keinen unmittelbaren Einsatz eines Zytostatikums erfordert. Dabei können die einzelnen Medikamente als Monotherapie oder in Kombination mit zielgerichteten Substanzen eingesetzt werden. Vor allem kombinierte Therapieregimes sind Inhalt zahlreicher Studienkonzepte mit dem Ziel, die endokrine Säule der MBC-Therapie zu optimieren und die Behandlung mit einer beeinträchtigenden Chemotherapie hinauszuzögern. Seit kurzem stehen hier die Hemmung des PI3K/AKT/mTOR(„phosphatidylinositol-3-kinase/AKT/mammalian target of rapamycin“)-Signaltransduktionsweges sowie der CDK 4/6 („cyclin-dependent kinase 4/6“) besonders im Fokus.

Schlüsselwörter

PI3K/AKT/mTOR-Signaltransduktionsweg Zytostatika Phosphatidylinositol-3-Kinasen Protoonkogenproteine c‑akt Mammaneoplasien 

Endocrine treatment of metastatic breast cancer

Abstract

Because of its favorable side effect profile compared to chemotherapy, endocrine therapy (ET) is the preferred treatment option in hormone receptor (HR)-positive metastatic breast cancer (MBC), as long as the tumor load does not require the immediate administration of cytostatic drugs. Various endocrine agents can be used as monotherapy or be combined with different targeted substances. Particularly the combined treatment regimens of ET with targeted agents are the subject of numerous clinical trials aiming to optimize the endocrine treatment options of MBC and to delay a treatment with potentially compromising cytostatic substances. Particular emphasis of recent studies was placed on inhibition of the phosphatidylinositol 3‑kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal transduction pathway as well as cyclin-dependent kinases 4 and 6 (CDK 4/6).

Keywords

PI3K/AKT/mTOR signal transduction pathway Cytostatic agents Phosphatidylinositol 3‑kinases Proto-oncogene proteins c‑akt Breast neoplasms 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Polasik, J. Huober, W. Janni und S. Huesmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
  2. 2.
    Heitz F, Barinoff J, du Bois O, Hils R, Fisseler-Eckhoff A et al (2013) Differences in the receptor status between primary and recurrent breast cancer—the frequency of and the reasons for discordance. Oncology 84(6):319–325CrossRefGoogle Scholar
  3. 3.
    Aurilio G, Disalvatore D, Pruneri G, Bagnardi V, Viale G et al (2014) A meta-analysis of oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 discordance between primary breast cancer and metastases. Eur J Cancer 50(2):277–289CrossRefGoogle Scholar
  4. 4.
    Yang YF, Liao YY, Yang M, Peng NF, Xie SR, Xie YF (2014) Discordances in ER, PR and HER2 receptors between primary and recurrent/metastatic lesions and their impact on survival in breast cancer patients. Med Oncol 31(10):214CrossRefGoogle Scholar
  5. 5.
    Hanf V, Schütz F, Liedtke C, Thill M (2014) AGO recommendations for the diagnosis and treatment of patients with advanced and metastatic breast cancer: update. Breast Care (Basel) 9:202–209CrossRefGoogle Scholar
  6. 6.
  7. 7.
    AstraZeneca (2017) Fachinformation Fulvestrant, http://www.detect-studien.de/dokumente/d4/fachinfo/Fachinformation_Fulvestrant.pdf. Zugegriffen: 01.03.2019
  8. 8.
    Robertson JFR et al (2016) Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (FALCON): an international, randomised, double-blind, phase 3 trial. Lancet 388(10063):P2997–P3005CrossRefGoogle Scholar
  9. 9.
    Abraham RT, Gibbons JJ (2007) The mammalian target of rapamycin signaling pathway: twists and turns in the road of cancer therapy. Clin Cancer Res 13(11):3109–3114CrossRefGoogle Scholar
  10. 10.
    Baselga J, Campone M, Piccart M, Burris H 3rd, Rugo H, Sahmoud T et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529CrossRefGoogle Scholar
  11. 11.
    Novartis (2018) Fachinformation Afinitor®, https://www.novartis.de/system/files/product-info/307839_GI_Afinitor.pdf. Zugegriffen: 01.03.2019
  12. 12.
    Liu P, Cheng H, Roberts TM et al (2009) Targeting the phosphoinositide 3‑kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644CrossRefGoogle Scholar
  13. 13.
    McCubrey JA, Steelman LS, Abrams SL et al (2006) Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 46:249–279CrossRefGoogle Scholar
  14. 14.
    Baselga J, Im S‑A, Iwata H et al (2015) PIK3CA status in circulation tumor DNA predicts efficacy of Buparlisib plus Fulvestrant in postmenopausal women with endocrine-resistant HR+/HER2− advanced breast cancer: first results from the randomized phase III belle-2 trial. San Antonio Breast Cancer Symposium, December 8–12Google Scholar
  15. 15.
    The ASCO Post (2018) ESMO 2018: SOLAR-1: Alpelisib in Patients With PIK3CA-Mutated HR-Positive, HER2-Negative Advanced Breast Cancer, http://www.ascopost.com/News/59389. Zugegriffen: 01.03.2019
  16. 16.
    Baselga J, Dent SF, Cortés J et al (2018) Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): Primary analysis from SANDPIPER, https://meetinglibrary.asco.org/record/153302/abstract. Zugegriffen: 01.03.2019
  17. 17.
    Hosford SR, Miller TW (2014) Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR. Pathways 7:203–215Google Scholar
  18. 18.
    Pfizer (2018) Fachinformation Ibrance®, https://www.pfizermed.de/fileadmin/produktdatenbank/pdf/016007_freigabe.pdf. Zugegriffen: 01.03.2019
  19. 19.
    Finn RS, Crown JP, Lang I et al (2015) The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16(1):25–35CrossRefGoogle Scholar
  20. 20.
    Cristofanilli M, Turner NC, Bondarenko I et al (2016) Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol 17(4):425–439CrossRefGoogle Scholar
  21. 21.
    The ASCO Post (2018) ESMO 2018: PALOMA-3: Palbociclib in Hormone Receptor–Positive, HER2-Negative Advanced Breast Cancer, http://www.ascopost.com/News/59388. Zugegriffen: 01.03.2019
  22. 22.
    GBG; German Breast Group (2018) Penelope (GBG 78), https://www.gbg.de/de/studien/penelope.php. Zugegriffen: 01.03.2019
  23. 23.
    Mittendorf EA et al (2011) Validation of a novel staging system for disease-specific survival in patients with breast cancer treated with neoadjuvant chemotherapy. J Clin Oncol.  https://doi.org/10.1200/JCO.2010.31.8469 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hortobagyi GN, Stemmer SM, Burris HA et al (2018) Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann Oncol 29(7):1541–1547PubMedGoogle Scholar
  25. 25.
    Slamon DJ, Neven P, Chia S et al (2018) Phase III randomized study of Ribociclib and Fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2‑negative advanced breast cancer: MONALEESA-3. J Clin Oncol 36(24):2465–2472CrossRefGoogle Scholar
  26. 26.
    Tripathy D, Im SA, Colleoni M et al (2018) Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol 19(7):904–915CrossRefGoogle Scholar
  27. 27.
    Dickler MN, Tolaney SM, Rugo HS, Cortes J (2016) MONARCH1: results from a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as monotherapy, in patients with HR+/HER2− breast cancer, after chemotherapy for advanced disease. J Clin Oncol.  https://doi.org/10.1200/JCO.2016.34.15_suppl.510 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sledge GW, Toi M, Neven P et al (2017) MONARCH 2: Abemaciclib in combination with fulvestrant in patients with HR+/HER2− advanced breast cancer who progressed on endocrine therapy. ASCO Annual Meeting, 03.6.2017Google Scholar
  29. 29.
    Johnston S, Martin M, Di Leo A et al (2019) MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer 5:5CrossRefGoogle Scholar
  30. 30.
    Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792CrossRefGoogle Scholar
  31. 31.
    Baselga J, Cortes J, Kim SB et al (2013) Pertuzmab plus Trastuzumab plus Docetaxel for metastatic breast cancer. N Engl J Med 366:109–119CrossRefGoogle Scholar
  32. 32.
    Swain SM, Kim SB, Cortes J et al (2013) Pertuzumab, Trastuzumab and Docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomized, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 14:461–471CrossRefGoogle Scholar
  33. 33.
    Swain SM, Ewer MS, Cortes J et al (2013b) Cardiac tolerability of pertuzumab plus trastuzumab plus docetaxel in patients with HER2-positive metastatic breast cancer in CLEOPATRA: a randomized, double-blind, placebo-controlled phase III study. Oncologist 18:257–264CrossRefGoogle Scholar
  34. 34.
    Huober J, Fasching PA, Barsoum M et al (2012) Higher efficacy of letrozole in combination with trastuzumab compared to letrozole monotherapy as first-line treatment in patients with HER2-positive, hormone-receptor-positive metastatic breast cancer—results of the eLEcTRA trial. Breast 21(1):27–33CrossRefGoogle Scholar
  35. 35.
    Kaufman B, Meckey JR, Clemens MR et al (2009) Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2‑positive, hormone-receptor-positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol 27(33):5529–5537CrossRefGoogle Scholar
  36. 36.
    Rimawi M, Ferrero J‑M, de la Haba-Rodriguez J et al (2016) Primary analysis of PERTAIN: a randomized, two-arm, open-label, multicenter phase II trial assessing the efficacy and safety of pertuzumab given in combination with trastuzumab plus an aromatase inhibitor in first-line patients with HER2-positive and hormone receptor-positive metastatic or locally advanced breast cancer. San Antonio Breast Cancer Symposium, 6.–10. Dez. 2016Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Arkadius Polasik
    • 1
  • Jens Huober
    • 1
  • Wolfgang Janni
    • 1
  • Sophia Huesmann
    • 1
    Email author
  1. 1.Universitätsfrauenklinik UlmUlmDeutschland

Personalised recommendations