Limited Diclosulam Herbicide Uptake and Translocation-Induced Tolerance in Crotalaria juncea

  • Camila da Costa Barros de Souza
  • Junior Borella
  • Jéssica Ferreira Lourenço Leal
  • Valdemar Luiz Tornisielo
  • Rodrigo Floriano Pimpinato
  • Patrícia Andrea Monquero
  • Camila Ferreira de PinhoEmail author


The study was to identify the potential tolerance of Crotalaria juncea to diclosulam uptake and translocation and its effects on the physiological metabolism of plants. Two experiments were carried out; I—Evaluation of uptake and translocation of 14C-diclosulam (35 g a.i. ha−1) in C. juncea, at seven and 14 days after emergence. II—Evaluation of chlorophyll a transient fluorescence of dark-adapted C. juncea leaves when applied diclosulam in pre-emergence. Plants of C. juncea presented an anatomical/metabolic barrier to diclosulam translocation in the stem, which may confer tolerance to this herbicidal, besides reduced translocation due to low accumulation in the cotyledons. In addition, plants can maintain photosynthetic metabolism active when growing in soil with diclosulam by not changing the dynamics of energy dissipation. Thus, when cultivated in soil with residual of diclosulam, C. juncea can tolerate the herbicide to maintain plant growth.


Herbicide tolerance 14C-diclosulam Herbicide uptake Herbicide translocation 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior- Brasil (CAPES)- Finance Code 001, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Associação Pró-Gestão das Águas da Bacia Hidrográfica do Rio Paraíba do Sul (AGEVAP).


  1. Braz GBP, Oliveira RS Jr, Zobiole LHS, Rubin RS, Voglewede C, Constantin J, Takano HK (2017) Sumatran Fleabane (Conyza sumatrensis) control in no-tillage soybean with diclosulam plus halauxifen-methyl. Weed Technol 31:184–192CrossRefGoogle Scholar
  2. Carabias-Martínez R, Rodríguez Gonzalo E, Fernández-Laespada ME, Sánchez-San Román FJ (2000) Evaluation of surface and ground-water pollution due to herbicides in agricultural areas of Zamora and Salamanca (Spain). J Chromatogr A 869:471–480CrossRefGoogle Scholar
  3. Crafts AS, Yamaguchi S (1964) The autoradiography of plant materials. California Agricultural Experiment Station, CaliforniaCrossRefGoogle Scholar
  4. Dayan FE, Zaccaro MLM (2012) Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pest Biochem Physiol 102:189–197CrossRefGoogle Scholar
  5. Fadin DA, Tornisielo VL, Barroso AAM, Ramos S, Dos Reis FC, Monquero PA (2018) Absorption and translocation of glyphosate in Spermacoce verticillata and alternative herbicide control. Weed Res 58:389–396CrossRefGoogle Scholar
  6. Florido FG, Monquero PA, Dias ACR, Tornisielo VL (2014) The absorption and translocation of imazaquin in green manures. Acta Sci-Agron 36:291–300CrossRefGoogle Scholar
  7. Foyer CH, Ruban AV, Noctor G (2017) Viewing oxidative stress through the lens of oxidative signaling rather than damage. Biochem J 474:877–883CrossRefGoogle Scholar
  8. Hanley TR, Billington R (2001) Toxicology of triazolopyrimidine herbicides. In: Krieger RI, Krieger WC (eds) Handbook of pesticide toxicology. Academic Press, California, pp 1653–1665CrossRefGoogle Scholar
  9. Karavangeli M, Labrou NE, Clonis YD, Tsaftaris A (2005) Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol Eng 22:121–128CrossRefGoogle Scholar
  10. Kocurek V, Smutny V, Filova J (2009) Chlorophyll fluorescence as an instrument for the assessment of herbicide efficacy. Cereal Res Commun 37:289–292Google Scholar
  11. Kopsell DA, Armel GR, Abney KR, Vargas JJ, Brosnan JT, Kopsell DE (2011) Leaf tissue pigments and chlorophyll fluorescence parameters vary among sweet corn genotypes of differential herbicide sensitivity. Pest Biochem Physiol 99:194–199CrossRefGoogle Scholar
  12. McCurdy JD, McElroy JS, Kopsell DA, Sams CE (2008) Mesotrione control and pigment concentrations of large crabgrass (Digitaria sanguinalis) under varying environmental conditions. Pest Manag Sci 65:640–644CrossRefGoogle Scholar
  13. Nandula VK, Vencill WK (2015) Herbicide absorption and translocation in plants using radioisotopes. Weed Sci 63:140–151CrossRefGoogle Scholar
  14. Pester TA, Nissen SJ, Westra P (2001) Absorption, translocation, and metabolism of imazamox in jointed goatgrass and feral rye. Weed Sci 49:607–612CrossRefGoogle Scholar
  15. Ramborger BP, Gularte CAO, Rodrigues DT, Gayer MC, Carriço MRS, Bianchini MC, Puntel RL, Denardin ELG, Roehrs R (2017) The phytoremediation potential of Plectranthus neochilus on 2,4-dichlorophenoxyacetic acid and the role of antioxidant capacity in herbicide tolerance. Chemosphere 188:231–240CrossRefGoogle Scholar
  16. Sadhukhan S, Sarkar U (2016) Production of biodiesel from Crotalaria juncea (Sunn-Hemp) oil using catalytic trans-esterification: process optimisation using a factorial and box-Behnken design. Waste Biomass Valor 7:343–355CrossRefGoogle Scholar
  17. Sadhukhan S, Bhattacharjee A, Sarkar U, Baidya PK, Baksi S (2018) Simultaneous degumming and production of a natural gum from Crotalaria juncea seeds: physicochemical and rheological characterization. Int J Biol Macromol 111:967–975CrossRefGoogle Scholar
  18. Salihu S, Hatzios KK, Derr JF (1998) Comparative uptake, translocation, and metabolism of root-applied isoxaben in ajuga (Ajuga reptans) and two ornamental euonymus species. Pest Biochem Physiol 60:119–131CrossRefGoogle Scholar
  19. Santos FM, Vargas L, Christoffoleti PJ, Martin TN, Mariani F, Silva DRO (2015) Alternative herbicides to control Conyza sumatrensis (Retz.) E. H. Walker resistant to and EPSPs inhibitors. (In Portuguese, with English abstract.). Ceres 62:531–538CrossRefGoogle Scholar
  20. Senseman SA (2007) Herbicide handbook, 9th edn. Weed Science Society of America, LawrenceGoogle Scholar
  21. Silva CMM, Gomes MMA, Freitas SP (2009) Effects of herbicides associated to a brassinosteroid analogue on the photosynthetic apparatus of Eucalyptus grandis seedlings. Planta Daninha 27:789–797CrossRefGoogle Scholar
  22. Siminszky B (2006) Plant cytochrome P450-mediated herbicide metabolism. Phytochem Rev 5:445–458CrossRefGoogle Scholar
  23. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC (ed) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 321–362CrossRefGoogle Scholar
  24. Tan S, Evans RR, Dahmer ML, Singh BK, Shander DL (2005) Imidazolinone tolerant crops: history, current status and future. Pest Manag Sci 61:246–257CrossRefGoogle Scholar
  25. Tssimilli-Michael M, Strasser RJ (2008) In vivo assessment of plants vitality: applications in detecting and evaluating the impact of Mycorrhization on host plants. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Dordrecht, pp 679–703CrossRefGoogle Scholar
  26. Walls FR, Corbin FT, Collins WK, Worsham AD, Bradley JR (1993) Imazaquin absorption, translocation, and metabolism in flue-cured tobaco. Weed Technol 7:370–375CrossRefGoogle Scholar
  27. Wehtje G, Miller ME, Grey TL, Brawner WR Jr (2007) Comparisons between X-ray film- and phosphorescence imaging-based autoradiography for the visualization of herbicide translocation. Weed Technol 21:1109–1114CrossRefGoogle Scholar
  28. Yan K, Chen P, Shao H, Shao C, Zhao S, Brestic M (2013) Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PLoS ONE 8:62100CrossRefGoogle Scholar
  29. Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviate abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta Bioenergy 1797:428–1438Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Camila da Costa Barros de Souza
    • 1
  • Junior Borella
    • 1
  • Jéssica Ferreira Lourenço Leal
    • 1
  • Valdemar Luiz Tornisielo
    • 2
  • Rodrigo Floriano Pimpinato
    • 2
  • Patrícia Andrea Monquero
    • 3
  • Camila Ferreira de Pinho
    • 1
    Email author
  1. 1.Department of Plant ScienceFederal Rural University of Rio de JaneiroSeropédicaBrazil
  2. 2.Center of Nuclear Energy in AgricultureUniversity of São PauloPiracicabaBrazil
  3. 3.Department of Natural Resources and Environmental ProtectionFederal University of São CarlosArarasBrazil

Personalised recommendations