Bioaccumulation of TBT and Its Cellular Toxic Effects on the Freshwater Prawn Macrobrachium rosenbergii

  • Peranandam RevathiEmail author
  • Palanisamy Iyapparaj
  • Rajkumar A. Vasanthi
  • Natesan Munuswamy
  • Arunachalam Palavesam


To test the toxic effects of tributyltin (TBT), Macrobrachium rosenbergii were exposed to three concentrations of TBT viz. 10 ng/L, 100 ng/L and 1000 ng/L for 90 days. The bioaccumulation of TBT level varied in hepatopancreas based upon dose dependent manner. Histopathological results revealed the reduction in basement membrane thickness, disruption of the hepatopancreatic tubules and abnormal lumen in hepatopancreas of TBT treated prawns. The ultrastructure of the control prawn showed normal architecture of cellular organelles with prominent nuclei in hepatocytes. On the other hand, many vacuoles, irregular arrangements of microvilli, swollen mitochondria, distorted rough endoplasmic reticulum cisternaes and abnormal nucleus were seen in the TBT treated group. Further, the biochemical and vitellogenin content were altered remarkably due to TBT exposure. It directly indicated that TBT had conspicuously inhibited the vitellogenesis. Therefore, it was inferred that the administration of TBT has considerably affected the hepatopancreatic functions in M. rosenbergii.


Macrobrachium rosenbergii Tributyltin Hepatopancreatic toxicity Bioaccumulation Ultrastructural variations Vitellogenesis 



The author gratefully acknowledge their sincere thanks to Department of Science and Technology—National Postdoctoral Fellowship Scheme (Ref No. PDF/2017/000822) for financial support.


  1. Abdelmeguid E, Awad HE, Ibrahim AM, Yousef NA (2009) Ultrastructural changes in hepatopancreas of Palaemon serratus, following treatment with petroleum carcinogenic compounds. Pak J Nutr 8(6):770–781CrossRefGoogle Scholar
  2. Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment: a review. Environ Int 34(2):292–308CrossRefGoogle Scholar
  3. Atti MS, Saied RM (2018) Physiological and ultrastructural alterations in the crayfish Procambarus clarkia treated with spinosad (bacterial derived insecticide). Biochem Physiol 7(1):226Google Scholar
  4. Belfroid AC, Purperhart M, Ariese F (2000) Organotin levels in seafood. Mar Poll Bull 40:226–232CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the qualification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  6. Bryan GW, Gibbs PE, Burt GR (1988) A comparison of the effectiveness of tri-n-butyltin chloride and five other organotin compounds in promoting the development of imposex in the dog-whelk Nucella lapillus. J Mar Biol Assoc UK 68:733–744CrossRefGoogle Scholar
  7. Dezwann D, Zandee I (1972) The utilization of glycogen and accumulation of some intermediate during anerobiosis in Mytilus edulis. Comp Biochem Physiol 43B:47–52Google Scholar
  8. Fiona P, Sherly W (2016) Effect of an organophosphorus pesticide on exposure to the Indian Tiger Prawn, Penaeus Monodon. Int J Sci Res 5(1):247–252Google Scholar
  9. Folch J, Lee M, Bloane-Stanley GHS (1957) A simple method for the isolation and purification to total from animal tissues. J Biochem 266:497–509Google Scholar
  10. Horiguchi T, Kojima M, Kaya M, Matsuo T, Shiraishi H, Morita M, Adachi Y (2002) Tributyltin and triphenyltin induce spermatogenesis in ovary of female abalone, Haliotis gigantea. Mar Environ Res 54(3–5):679–684CrossRefGoogle Scholar
  11. Iyapparaj P, Revathi P, Ramasubburayan R (2013) Antifouling activity of the methanolic extract of Syringodium isoetifolium, and its toxicity relative to tributyltin on the ovarian development of brown mussel Perna indica. Ecotoxicol Environ Safe 89:231–238CrossRefGoogle Scholar
  12. Jayachitra J, Ilavarasi P, Subashini R (2016) Biochemical alteration in selected body tissues of freshwater prawns Macrobrachium rosenbergii exposed to monocrotophos. Worl J Pharm Pharm Sci 5(5):1469–1480Google Scholar
  13. Johnson DJ, Alexander CG, Yellowlees D (1998) Epithelial cytology and function in the digestive gland of Thenus orientalis (Decapoda, Scyllaridae). J Crust Biol 18(12):271–278Google Scholar
  14. Kharat PS, Laxmi B, Shejule KB, Ghoble BC (2009) Effect of TBTCL on glycogen profile in freshwater prawn, Macrobrachium kistnensis. World Appl Sci J 7(12):1534–1539Google Scholar
  15. Kharat PS, Pathan TS, Shejule KB (2014) Histopanthological changes in hepatopancreas of freshwater prawn Macrobrachium kistnensis exposed to TBTCL. Mid East J Sci Res 22(9):1396–1400Google Scholar
  16. Kime DE, Nash JP, Scott AP (1999) Vitellogenesis as a biomarker of reproductive disruption by xenobiotics. Aquaculture 177:345–352CrossRefGoogle Scholar
  17. Paruruckumani PS, Maharajan A, Ganapiriya V, Narayanaswamy Y, Raja Jeyasekar R (2015) Surface ultrastructural changes in the gill and liver tissue of asian sea bass Lates calcarifer (Bloch) exposed to copper. Biol Trace Elem Res. Google Scholar
  18. Qun-Fang Z, Gui- Bin J, Ji- Yan J (2002) Effects of sublethal levels of tributyltin chloride in a new toxicity test organism: the Chinese rare minnow (Gobiocypris rarus). Arch Environ Contam Toxicol 42:332–337CrossRefGoogle Scholar
  19. Revathi P, Munuswamy N (2010) Effect of TBT on the early embryonic development in the freshwater prawn Macrobrachium rosenbergii (De Man). Chemosphere 79:922–927CrossRefGoogle Scholar
  20. Revathi P, Iyapparaj P, Arockia Vasanthi L, Munuswamy N, Krishnan M (2013a) Impact of TBT on the vitellogenesis and sex hormones in freshwater prawn Macrobrachium rosenbergii (De Man, 1879). Aquat Biosyst 9:10CrossRefGoogle Scholar
  21. Revathi P, Iyapparaj P, Munuswamy N, Vasanthi LA, Krishnan M (2013b) Bioaccumulation of tributyltin and its impact on spermatogenesis in mud crab Scylla serrata (Forskal). Turk J Biol 37(3):296–304Google Scholar
  22. Revathi P, Iyapparaj P, Vasanthi L, Munuswamy N, Arun Prasanna V, Suganya T, Anantharaman P, Krishnan M (2014a) TBT effects on the development of intersex (Ovotestis) in female freshwater prawn Macrobrachium rosenbergii. BioMed Res Int. Google Scholar
  23. Revathi P, Iyapparaj P, ArockiaVasanthi L, Munuswamy N, Arun V, Pandiarajan J, Krishnan M (2014b) Influence of short term exposure of TBT on the male reproductive activity in freshwater prawn Macrobrachium rosenbergii (De Man). Bull Environ Contam Toxicol. Google Scholar
  24. Sangeetha S, Deeparani S (2016) Histological and biochemical changes by the pesticides Endosulfan, Chlorpyrifos and Carbaryl on the gonads of Fiddler crab, Uca triangularis. World J Environ Pollut 6(1):7–14Google Scholar
  25. Saravana Bhavan PS, Geraldine P (2000) Histopathology of the hepatopancreas and gills of the prawn Macrobrachium malcomsonii exposed to endosulfan. Aquat Toxicol 50:331–339CrossRefGoogle Scholar
  26. Shaikh FI, Ustad IR, Ansari NT (2010) Effect of heavy metal on the Ovary of freshwater crab, Barytelphusa cunicularis (Westwood). Bioscan 5(2):335–338Google Scholar
  27. Silveyra GR, Vatnick P, Medesani I (2018) Effects of atrazine on vitellogenesis, steroid levels and lipid peroxidation, in female red swamp crayfish Procambarus clarkia. Aquat Toxicol 197:136–142CrossRefGoogle Scholar
  28. Tsukimura B, Bender JS, Linder CJ (2000) Developmental aspects of gonadal regulation in the ridgeback shrimp, Sicyonia ingentis. Comp Biochem Physiol 127A:215–224CrossRefGoogle Scholar
  29. Vannuci-Silva M, Menegario A, Franchi M, Brossi-Garcia L, Souza M, Jr Araújo, Bindes G, Govone S (2013) Bioaccumulation of tributyltin by blue crabs. J Braz Chem Soc 24(10):1642–1648Google Scholar
  30. Vijayavel K, Balasubramanian MP (2006) Fluctuations of biochemical constituents and marker enzymes as a consequence of naphthalene toxicity in an estuarine edible crab Scylla serrata. Ecotoxicol Environ Saf 63(1):141–147CrossRefGoogle Scholar
  31. Vijayavel K, Anbuselvam C, Balasubramanian MP, Deepak Samuel V, Gopalakrishnan S (2006) Assessment of biochemical components and enzyme activities in the estuarine crab Scylla tranquebarica from naphthalene contaminated habitants. Ecotoxicology 15(5):469–476CrossRefGoogle Scholar
  32. Waisbaum RG, Rodriguez C, Sbarbati Nudelman N (2010) Determination of TBT in water and sediment samples along the Argentine Atlantic coast. Environ Technol 31(12):1335–1342CrossRefGoogle Scholar
  33. Waldock MJ, Thain J (1989) Shell thickening in Crassostrea gigas: organotin antifouling or sediment-induced. Mar Pollut Bull 14:411–415CrossRefGoogle Scholar
  34. Yamuna P, Bhavan Saravana, Geraldine P (2009) Ultrastructural observations in gills and hepatopancreas of prawn Macrobrachium malcolmsonii exposed to mercury. J Environ Biol 30(5):693–699Google Scholar
  35. Zagalsky PF, Cheesman DF, Ceccaldi HJ (1967) Studies oncarotenoid-containing lipoproteins isolated from the eggs and ovaries of certain marine invertebrates. Comp Biochem Physiol 22:851–871CrossRefGoogle Scholar
  36. Zhang IL, Zuo ZH, Chen YX, Zhao Y, Hu S, Wang CG (2007) Effect of tributyltin on the development of ovary in female cuvier (Sebastiscus marmoratus). Aquat Toxicol 83:174–179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Peranandam Revathi
    • 1
    Email author
  • Palanisamy Iyapparaj
    • 2
  • Rajkumar A. Vasanthi
    • 3
  • Natesan Munuswamy
    • 4
  • Arunachalam Palavesam
    • 1
  1. 1.Department of Animal ScienceManonmanium Sundaranar UniversityTirunelveliIndia
  2. 2.Ideal Biosciences Private LimitedTiruchirappalliIndia
  3. 3.Department of Animal Health and ManagementAlagappa UniversityKaraikudiIndia
  4. 4.Unit of Aquaculture and Cryobiology, Department of ZoologyUniversity of MadrasChennaiIndia

Personalised recommendations