Measurements and Distribution of Atmospheric Particulate-Bound Mercury: A Review

  • Hui ZhangEmail author
  • Xuewu Fu
  • Xun Wang
  • Xinbin Feng
Focused Review


Atmospheric particulate-bound mercury (PBM) plays an important role in the geochemical cycling of mercury (Hg). This study reviewed research progress of the PBM, including the possible emission and deposition pathways, measurement methods and the global distribution. The primary PBM sources are anthropogenic sources, but natural sources could be also a considerable contributor, for instance, chemical transport and dust in the arid and desert area. Different filter methods, such as quartz fibre filters, have been applied to the PBM measurement, and PBM can also be real-time monitored automatically. Generally, the average PBM concentrations were higher in the Northern Hemisphere than in the Southern Hemisphere. However, the PBM level of Antarctica is quite high. PBM concentrations were higher in the urban areas than in the remote areas, and there was a high PBM level in the developing countries. Moreover, high PBM concentrations were observed in the range 20°–60° of northern latitude.


Mercury Hg Particulate-bound mercury Anthropogenic sources 



This work was funded by the National Natural Science Foundation of China (41703134) and the National Key R&D Program of China (2017YFC0212001).

Supplementary material

128_2019_2663_MOESM1_ESM.docx (613 kb)
Supplementary file1 (DOCX 614 kb)


  1. AMAP/UNEP (2013) Technical background report for the Global Mercury Assessment 2013, Arctic Monitoring and Assessment Programme, Oslo. Norway. UNEP Chemicals Branch, Geneva, pp 1–263Google Scholar
  2. Arimoto R, Schloesslin C, Davis D, Hogan A, Grube P, Fitzgerald W, Lamborg C (2004) Lead and mercury in aerosol particles collected over the South Pole during ISCAT-2000. Atmos Environ 38(32):5485–5491CrossRefGoogle Scholar
  3. Ariya PA, Amyot M, Dastoor A, Deeds D, Feinberg A, Kos G, Poulain A, Ryjkov A, Semeniuk K, Subir M, Toyota K (2015) Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions. Chem Rev 115(10):3760–3802CrossRefGoogle Scholar
  4. Carpi A (1997) Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere. Water Air Soil Pollut 98(3–4):241–254Google Scholar
  5. Chand D, Jaffe D, Prestbo E, Swartzendruber PC, Hafner W, Weiss-Penzias P, Kato S, Takami A, Hatakeyama S, Kajii YZ (2008) Reactive and particulate mercury in the Asian marine boundary layer. Atmos Environ 42(34):7988–7996CrossRefGoogle Scholar
  6. De Simone F, Artaxo P, Bencardino M, Cinnirella S, Carbone F, D'Amore F, Dommergue A, Xin XB, Gencarelli CN, Hedgecock IM, Landis MS, Sprovieri F, Suzuki N, Wangberg I, Pirrone N (2017) Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment. Atmos Chem Phys 17(3):1881–1899CrossRefGoogle Scholar
  7. Fang GC, Yang IL, Liu CK (2010) Estimation of atmospheric particulates and dry deposition particulate-bound mercury Hg(p) in Sha-Lu, Taiwan. Aerosol Air Qual Res 10(5):403–413CrossRefGoogle Scholar
  8. Fang GC, Tsai JH, Lin YH, Chang CY (2012a) Dry deposition of atmospheric particle-bound mercury in the middle Taiwan. Aerosol Air Qual Res 12(6):1298–1308CrossRefGoogle Scholar
  9. Fang GC, Zhang L, Huang CS (2012b) Measurements of size-fractionated concentration and bulk dry deposition of atmospheric particulate bound mercury. Atmos Environ 61:371–377CrossRefGoogle Scholar
  10. Fu XW, Feng XB, Sommar J, Wang SF (2012) A review of studies on atmospheric mercury in China. Sci Total Environ 421:73–81CrossRefGoogle Scholar
  11. Fu XW, Zhang H, Yu B, Wang X, Lin CJ, Feng XB (2015) Observations of atmospheric mercury in China: a critical review. Atmos Chem Phys 15(16):9455–9476CrossRefGoogle Scholar
  12. Fu XW, Yang X, Lang XF, Zhou J, Zhang H, Yu B, Yan HY, Lin CJ, Feng XB (2016) Atmospheric wet and litterfall mercury deposition at urban and rural sites in China. Atmos Chem Phys 16(18):11547–11562CrossRefGoogle Scholar
  13. Fu XW, Zhang H, Feng XB, Tan QY, Ming LL, Liu C, Zhang LM (2019) Domestic and transboundary sources of atmospheric particulate bound mercury in remote areas of China: evidence from mercury isotopes. Environ Sci Technol 53(4):1947–1957CrossRefGoogle Scholar
  14. Hong QQ, Xie ZQ, Liu C, Wang FY, Xie PH, Kang H, Xu J, Wang JC, Wu FC, He PZ, Mou FS, Fan SD, Dong YS, Zhan HC, Yu XW, Chi XY, Liu JG (2016) Speciated atmospheric mercury on haze and non-haze days in an inland city in China. Atmos Chem Phys 16(21):13807–13821CrossRefGoogle Scholar
  15. Huang Q, Chen JB, Huang WL, Reinfelder JR, Fu PQ, Yuan SL, Wang ZW, Yuan W, Cai HM, Ren H, Sun YL, He L (2019) Diel variation in mercury stable isotope ratios records photoreduction of PM2.5-bound mercury. Atmos Chem Phys 19(1):315–325CrossRefGoogle Scholar
  16. Kim PR, Han YJ, Holsen TM, Yi SM (2012) Atmospheric particulate mercury: concentrations and size distributions. Atmos Environ 61:94–102CrossRefGoogle Scholar
  17. Li S, Cheng CM, Chen B, Cao Y, Vervynckt J, Adebambo A, Pan WP (2007) Investigation of the relationship between particulate-bound mercury and properties of fly ash in a full-scale 100 MWe pulverized coal combustion boiler. Energy Fuels 21(6):3292–3299CrossRefGoogle Scholar
  18. Lin CJ, Pehkonen SO (1999) The chemistry of atmospheric mercury: a review. Atmos Environ 33(13):2067–2079CrossRefGoogle Scholar
  19. Lindberg SE, Stratton WJ (1998) Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air. Environ Sci Technol 32:49–57CrossRefGoogle Scholar
  20. Lu JY, Schroeder WH (1999) Sampling and determination of particulate mercury in ambient air: a review. Water Air Soil Pollut 112(3–4):279–295CrossRefGoogle Scholar
  21. Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566CrossRefGoogle Scholar
  22. Munthe J, Wangberg I, Pirrone N, Iverfeldt A, Ferrara R, Ebinghaus R, Feng X, Gardfeldt K, Keeler G, Lanzillotta E, Lindberg SE, Lu J, Mamane Y, Prestbo E, Schmolke S, Schroeder WH, Sommar J, Sprovieri F, Stevens RK, Stratton W, Tuncel G, Urba A (2001) Intercomparison of methods for sampling and analysis of atmospheric mercury species. Atmos Environ 35(17):3007–3017CrossRefGoogle Scholar
  23. Murphy DM, Thomson DS, Mahoney TMJ (1998) In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers. Science 282(5394):1664–1669CrossRefGoogle Scholar
  24. Obrist D, Moosmuller H, Schurmann R, Chen LWA, Kreidenweis SM (2008) Particulate-phase and gaseous elemental mercury emissions during biomass combustion: controlling factors and correlation with particulate matter emissions. Environ Sci Technol 42(3):721–727CrossRefGoogle Scholar
  25. Pfaffhuber KA, Berg T, Hirdman D, Stohl A (2012) Atmospheric mercury observations from Antarctica: seasonal variation and source and sink region calculations. Atmos Chem Phys 12(7):3241–3251CrossRefGoogle Scholar
  26. Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10(13):5951–5964CrossRefGoogle Scholar
  27. Qie GH, Wang Y, Wu C, Mao HT, Zhang P, Li T, Li YX, Talbot R, Hou CX, Yue TX (2018) Distribution and sources of particulate mercury and other trace elements in PM2.5 and PM10 atop Mount Tai, China. J Environ Manag 215:195–205CrossRefGoogle Scholar
  28. Rothenberg SE, Mckee L, Gilbreath A, Yee D, Connor M, Fu XW (2010) Evidence for short-range transport of atmospheric mercury to a rural, inland site. Atmos Environ 44(10):1263–1273CrossRefGoogle Scholar
  29. Sakata M, Asakura K (2007) Estimating contribution of precipitation scavenging of atmospheric particulate mercury to mercury wet deposition in Japan. Atmos Environ 41(8):1669–1680CrossRefGoogle Scholar
  30. Sprovieri F, Pirrone N, Hedgecock IM, Landis MS, Stevens RK (2002) Intensive atmospheric mercury measurements at Terra Nova Bay in Antarctica during November and December 2000. J Geophys Res Atmos 107(D23):4722CrossRefGoogle Scholar
  31. Sprovieri F, Pirrone N, Bencardino M, D'Amore F, Carbone F, Cinnirella S, Mannarino V, Landis M, Ebinghaus R, Weigelt A, Brunke EG, Labuschagne C, Martin L, Munthe J, Wangberg I, Artaxo P, Morais F, Barbosa HDJ, Brito J, Cairns W, Barbante C, Dieguez MD, Garcia PE, Dommergue A, Angot H, Magand O, Skov H, Horvat M, Kotnik J, Read KA, Neves LM, Gawlik BM, Sena F, Mashyanov N, Obolkin V, Wip D, Bin Feng X, Zhang H, Fu XW, Ramachandran R, Cossa D, Knoery J, Marusczak N, Nerentorp M, Norstrom C (2016) Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmos Chem Phys 16(18):11915–11935CrossRefGoogle Scholar
  32. Wang ZW, Zhang XS, Chen ZS, Zhang Y (2006) Mercury concentrations in size-fractionated airborne particles at urban and suburban sites in Beijing, China. Atmos Environ 40(12):2194–2201CrossRefGoogle Scholar
  33. Wang SX, Zhang L, Li GH, Wu Y, Hao JM, Pirrone N, Sprovieri F, Ancora MP (2010) Mercury emission and speciation of coal-fired power plants in China. Atmos Chem Phys 10(3):1183–1192CrossRefGoogle Scholar
  34. Wang X, Zhang H, Lin CJ, Fu XW, Zhang YP, Feng XB (2015) Transboundary transport and deposition of Hg emission from springtime biomass burning in the Indo-China Peninsula. J Geophys Res Atmos 120(18):9758–9771CrossRefGoogle Scholar
  35. Wang X, Lin CJ, Yuan W, Sommar J, Zhu W, Feng XB (2016) Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China. Atmos Chem Phys 16(17):11125–11143CrossRefGoogle Scholar
  36. Xiao ZF, Munthe J, Lindqvist O (1991) Sampling and Determination of gaseous and particulate mercury in the atmosphere using gold-coated denuders. Water Air Soil Pollut 56:141–151CrossRefGoogle Scholar
  37. Xiu GL, Cai J, Zhang WY, Zhang DN, Bueler A, Lee SC, Shen Y, Xu LH, Huang XJ, Zhang P (2009) Speciated mercury in size-fractionated particles in Shanghai ambient air. Atmos Environ 43(19):3145–3154CrossRefGoogle Scholar
  38. Zhang H, Fu XW, Lin CJ, Wang X, Feng XB (2015a) Observation and analysis of speciated atmospheric mercury in Shangri-La, Tibetan Plateau, China. Atmos Chem Phys 15(2):653–665CrossRefGoogle Scholar
  39. Zhang L, Wang SX, Wang L, Wu Y, Duan L, Wu QR, Wang FY, Yang M, Yang H, Hao JM, Liu X (2015b) Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environ Sci Technol 49(5):3185–3194CrossRefGoogle Scholar
  40. Zhang LM, Wu ZY, Cheng I, Wright LP, Olson ML, Gay DA, Risch MR, Brooks S, Castro MS, Conley GD, Edgerton ES, Holsen TM, Luke W, Tordon R, Weiss-Penzias P (2016) The estimated six-year mercury dry deposition across North America. Environ Sci Technol 50(23):12864–12873CrossRefGoogle Scholar
  41. Zhu J, Wang T, Talbot R, Mao H, Yang X, Fu C, Sun J, Zhuang B, Li S, Han Y, Xie M (2014) Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China. Atmos Chem Phys 14(5):2233–2244CrossRefGoogle Scholar
  42. Zikang Cui ZL, Zhang Y, Wang X, Li Q, Zhang L, Feng X, Li X, Shang L, Yao Z (2019) Atmospheric mercury emissions from residential coal combustion in Guizhou Province, Southwest China. Energy Fuels 33(3):1937–1943CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  2. 2.CAS Center for Excellence in Quaternary Science and Global ChangeXi’anChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.College of Resources and EnvironmentSouthwest UniversityChongqingChina

Personalised recommendations