Advertisement

Analysis of the microRNA Profile of Coal-Burning Endemic Fluorosis Using Deep Sequencing and Bioinformatic Approaches

  • Fei Wang
  • Chen Li
  • Yu Qin
  • Xue Han
  • Jiayu Gao
  • Aihua Zhang
  • Peng LuoEmail author
  • Xueli PanEmail author
Article

Abstract

MicroRNAs (miRNAs) differentially expressed in plasma were identified using microRNA sequencing (miRNA-seq), and five miRNAs were selected for validation. Potential target genes of these five miRNAs were predicted using the miRWalk3.0 database, and the overlapping portions were analyzed using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Comparison of the cases and controls revealed 127 known differentially expressed miRNAs. A total of 44 and 83 miRNAs were upregulated and downregulated, respectively. Through target gene prediction of five miRNAs, we obtained 1360 target genes. GO enrichment analysis showed that the target genes of these dysregulated miRNAs were related with secretion, protein binding, and cell growth. The KEGG pathway analysis showed that pathways in cancer, calcium signaling, and rat sarcoma (Ras) signaling, etc. were likely regulated by these five miRNAs. These findings highlight the distinct expression patterns of miRNAs in coal-burning endemic fluorosis.

Keywords

MicroRNA-sequencing miRNAs Fluorosis GO KEGG 

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 81660524) and the First-Class Discipline Construction Project in Guizhou Province - Public Health and Preventive Medicine (No. 2017[85]).

Supplementary material

128_2019_2660_MOESM1_ESM.docx (74 kb)
Supplementary file1 (DOCX 74 kb)
128_2019_2660_MOESM2_ESM.xlsx (10 kb)
Supplementary file3 (XLSX 10 kb)

References

  1. Ai C, Kong L (2018) CGPS: a machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. J Genet Genomics 45:489–504.  https://doi.org/10.1016/j.jgg.2018.08.002 CrossRefGoogle Scholar
  2. Ando M, Tadano M, Asanuma S, Tamura K, Matsushima S, Watanabe T, Kondo T, Sakurai S, Ji R, Liang C, Cao S (1998) Health effects of indoor fluoride pollution from coal burning in China. Environ Health Perspect 106:239–244CrossRefGoogle Scholar
  3. Barbier O, Arreola-Mendoza L, Del Razo LM (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188:319–333.  https://doi.org/10.1016/j.cbi.2010.07.011 CrossRefGoogle Scholar
  4. Browne BM, Stensland KD, Patel CK, Sullivan T, Burks EJ, Canes D, Raman JD, Warrick J, Reiger-Christ KM (2019) MicroRNA expression profiles in upper tract urothelial carcinoma differentiate tumor grade, stage, and survival: implications for clinical decision-making. Urology 123:93–100.  https://doi.org/10.1016/j.urology.2018.10.004 CrossRefGoogle Scholar
  5. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57.  https://doi.org/10.1038/nprot.2008.211 CrossRefGoogle Scholar
  6. Fan B, Yu Y, Zhang Y (2015) PI3K-Akt1 expression and its significance in liver tissues with chronic fluorosis. Int J Clin Exp Pathol 8(2):1226–1236Google Scholar
  7. Jiang Y, Yang Y, Wang H, Darko GM, Sun D, Gao Y (2018) Identification of miR-200c-3p as a major regulator of SaoS2 cells activation induced by fluoride. Chemosphere 199:694–701.  https://doi.org/10.1016/j.chemosphere.2018.01.095 CrossRefGoogle Scholar
  8. Li L, Luo KL, Liu YL, Xu YX (2012) The pollution control of fluorine and arsenic in roasted corn in "coal-burning" fluorosis area Yunnan, China. J Hazard Mater 229–230:57–65.  https://doi.org/10.1016/j.jhazmat.2012.05.067 CrossRefGoogle Scholar
  9. Liu P, Yang X, Zhang H, Pu J, Wei K (2018) analysis of change in microrna expression profiles of lung cancer A549 cells treated with Radix tetrastigma hemsleyani flavonoids. Onco Targets Ther 11:4283–4300.  https://doi.org/10.2147/OTT.S164276 CrossRefGoogle Scholar
  10. Lu X, Wu J, Ma M, Wu X, Wen J, Yu J (2018) An integrated deep sequencing analysis of microRNAs in transplanted corneas. Mol Immunol 101:429–439.  https://doi.org/10.1016/j.molimm.2018.06.014 CrossRefGoogle Scholar
  11. Mandourah AY, Ranganath L, Barraclough R, Vinjamuri S, Hof RV, Hamill S, Czanner G, Dera AA, Wang D, Barraclough DL (2018) Circulating microRNAs as potential diagnostic biomarkers for osteoporosis. Sci Rep 8:8421.  https://doi.org/10.1038/s41598-018-26525-y CrossRefGoogle Scholar
  12. Ming J, Wu S, You T, Wang X, Yu C, Luo P, Zhang A, Pan X (2018) Histone deacetylation in the promoter of p16 Is involved in fluoride-induced human osteoblast activation via the inhibition of Sp1 binding. Biol Trace Elem Res 188(2):373–383.  https://doi.org/10.1007/s12011-018-1413-z CrossRefGoogle Scholar
  13. Ministry of Health of the People’s Republic of China. Division of endemic fluorosis areas (GB 17018-2011), Issued in 2011.Google Scholar
  14. Noveski P, Popovska-Jankovic K, Kubelka-Sabit K, Filipovski V, Lazarevski S, Plaseski T, Plaseska-Karanfilska D (2016) MicroRNA expression profiles in testicular biopsies of patients with impaired spermatogenesis. Andrology 4:1020–1027.  https://doi.org/10.1111/andr.12246 CrossRefGoogle Scholar
  15. Patil MM, Lakhkar BB, Patil SS (2018) Curse of fluorosis. Indian J Pediatr 85:375–383.  https://doi.org/10.1007/s12098-017-2574-z CrossRefGoogle Scholar
  16. Pei J, Xu J, Gao Y, Sun H, Lv C, Jiang Y, Sun W, Jiang W, Qu L, Jiang L, Sun D (2019) Identification of pathogenesis-related microRNA profiles in skeletal fluorosis. Res Rep Fluoride 52(1):29–41Google Scholar
  17. Pramanik S, Saha D (2017) The genetic influence in fluorosis. Environ Toxicol Pharmacol 56:157–162.  https://doi.org/10.1016/j.etap.2017.09.008 CrossRefGoogle Scholar
  18. Shusterman K, Gibson CW, Li Y, Healey M, Peng L (2014) Wnt-RhoA signaling pathways in fluoride-treated ameloblast-lineage cells. Cells Tissues Organs 199:159–168.  https://doi.org/10.1159/000367840 CrossRefGoogle Scholar
  19. Sticht C, De La Torre C, Parveen A, Gretz N (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE 13:e0206239.  https://doi.org/10.1371/journal.pone.0206239 CrossRefGoogle Scholar
  20. Wang Y, Zhang X, Zhao Z, Xu H (2017) Preliminary analysis of microRNAs expression profiling in MC3T3-E1 cells exposed to fluoride. Biol Trace Elem Res 176:367–373.  https://doi.org/10.1007/s12011-016-0833-x CrossRefGoogle Scholar
  21. Wei Y, Zeng B, Zhang H, Chen C, Wu Y, Wang N, Wu Y, Shen L (2016) iTRAQ-based proteomics analysis of serum proteins in Wistar rats treated with sodium fluoride: insight into the potential mechanism and candidate biomarkers of fluorosis. Int J Mol Sci.  https://doi.org/10.3390/ijms17101644 Google Scholar
  22. Wei Y, Zeng B, Zhang H, Chen C, Wu Y, Wang N, Wu Y, Zhao D, Zhao Y, Iqbal J, Shen L (2018) Comparative proteomic analysis of fluoride treated rat bone provides new insights into the molecular mechanisms of fluoride toxicity. Toxicol Lett 291:39–50.  https://doi.org/10.1016/j.toxlet.2018.04.006 CrossRefGoogle Scholar
  23. Weilner S et al (2015) Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 79:43–51.  https://doi.org/10.1016/j.bone.2015.05.027 CrossRefGoogle Scholar
  24. Wu S, Yan W, Qiu B, Liao Y, Gu J, Wei S, Zhang A, Pan X (2019) Aberrant methylation-induced dysfunction of p16 is associated with osteoblast activation caused by fluoride. Environ Toxicol 34:37–47.  https://doi.org/10.1002/tox.22655 CrossRefGoogle Scholar
  25. Yang C, Wang Y, Xu H (2017) Treatment and prevention of skeletal fluorosis. Biomed Environ Sci 30:147–149.  https://doi.org/10.3967/bes2017.020 Google Scholar
  26. Yang Y, Zhao Q, Liu Y, Liu X, Chu Y, Yan H, Fan Y, Huo S, Wang L, Lou Q, Guo N, Sun D, Gao Y (2018) FRZB1 rs2242070 polymorphisms is associated with brick tea type skeletal fluorosis in Kazakhs, but not in Tibetans, China. Arch Toxicol 92:2217–2225.  https://doi.org/10.1007/s00204-018-2217-9 CrossRefGoogle Scholar
  27. Yao Q, Chen Y, Zhou X (2019) The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol 51:11–17.  https://doi.org/10.1016/j.cbpa.2019.01.024 CrossRefGoogle Scholar
  28. Zhang J, Jiang Y, Han X, Roy M, Liu W, Zhao X, Liu J (2018) Differential expression profiles and functional analysis of plasma miRNAs associated with chronic myeloid leukemia phases. Future Oncol.  https://doi.org/10.2217/fon-2018-0741 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Toxicology, School of Public HealthGuizhou Medical UniversityGuiyangChina
  2. 2.Guizhou Orthopedics HospitalGuiyangChina
  3. 3.Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of EducationGuizhou Medical UniversityGuiyangChina

Personalised recommendations