Advertisement

Surface Sorption Site and Complexation Structure of Ca2+ at the Goethite–Water Interface: A Molecular Dynamics Simulation and Quantitative XANES Analysis

  • Yongfeng Jia
  • Yang Zheng
  • Jinru Lin
  • Guoqing Zhang
  • Xu Ma
  • Xin Wang
  • Shaofeng WangEmail author
Article

Abstract

The molecular-level surface complexation structure of Ca2+ at the goethite/water interface remains unclear. We investigated the sorption of Ca2+ on the surfaces of goethite using classical molecular dynamics (MD) simulations and Ca K-edge X-ray absorption near edge structure (XANES) spectroscopy. The XANES results showed that Ca2+ was sequestered by goethite dominantly via sorption at pH ≤ 9, whereas the Ca(OH)2 surface precipitate formed at pH 10 for an initial Ca2+ concentration of 2 mM. The MD simulations showed that Ca2+ dominantly absorbed on the (100) and (110) surfaces of goethite via bidentate binuclear complexation by forming ≡(Fe-OH)2Ca2+·5H2O species, whereas little Ca2+ adsorbed on the (021) surface. The theoretical Ca K-edge XANES spectrum calculations gave a mean Ca-O interatomic distance of 2.34 Å (2.23–2.55 Å) and a Ca-Fe interatomic distance of 3.80 Å (3.79–3.81 Å) at goethite/water interface. Our results may shed some light on the geochemical cycling of calcium and other related cations and anions.

Keywords

Ca sorption Molecular dynamics XANES analysis Local structure 

Notes

Acknowledgements

We gratefully thank the financial support from the National Key R&D Pro-gram of China (2017YFD0801505), National Natural Science Foundation of China (41530643, 41877393, and 41673130), Hundred-Talent Program (Y8SBR121SS) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. QYZDJ-SSW-DQC038).

Supplementary material

128_2019_2641_MOESM1_ESM.docx (525 kb)
Supplementary file1 (DOCX 525 kb)

References

  1. Adeagbo WA, Doltsinis NL, Burchard M et al (2012) Ca2+ solvation as a function of p, T, and pH from ab initio simulation. J Chem Phys 137:1–8CrossRefGoogle Scholar
  2. Benfatto M, Congiu-Castellano A, Daniele A et al (2001) MXAN: a new software procedure to perform geometrical fitting of experimental XANES spectra. J Synchrotron Radiat 8:267–269CrossRefGoogle Scholar
  3. Boily JF (2012) Water structure and hydrogen bonding at goethite/water interfaces: Implications for proton affinities. J Phys Chem C 116:4714–4724CrossRefGoogle Scholar
  4. Boily JF, Felmy AR (2008) On the protonation of oxo- and hydroxo-groups of the goethite (alpha-FeOOH) surface: A FTIR spectroscopic investigation of surface O–H stretching vibrations. Geochim Cosmochim Ac 72:3338–3357CrossRefGoogle Scholar
  5. Bothe JV, Brown PW (1999) Arsenic immobilization by calcium arsenate formation. Environ Sci Technol 33:3806–3811CrossRefGoogle Scholar
  6. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrence and uses. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  7. D'Angelo P, Petit PE, Pavel NV (2004) Double-electron excitation channels at the Ca2+ K-edge of hydrated calcium ion. J Phys Chem B 108:11857–11865CrossRefGoogle Scholar
  8. Davila-Pulido GI, Uribe-Salas A, Alvarez-Silva M et al (2015) The role of calcium in xanthate adsorption onto sphalerite. Miner Eng 71:113–119CrossRefGoogle Scholar
  9. de Leeuw NH, Cooper TG (2007) Surface simulation studies of the hydration of white rust Fe(OH)2, goethite alpha-FeO(OH) and hematite alpha-Fe2O3. Geochim Cosmochim Acta 71:1655–1673CrossRefGoogle Scholar
  10. Ghose SK, Waychunas GA, Trainor TP et al (2010) Hydrated goethite (alpha-FeOOH) (100) interface structure: ordered water and surface functional groups. Geochim Cosmochim Acta 74:1943–1953CrossRefGoogle Scholar
  11. Jalilehvand F, Spångberg D, Lindqvist-Reis P et al (2001) Hydration of the calcium ion. An EXAFS, large-angle X-ray scattering, and molecular dynamics simulation study. J Am Chem Soc 123:431–441CrossRefGoogle Scholar
  12. Jiao D, King C, Grossfield A et al (2006) Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. J Phys Chem B 110:18553–18559CrossRefGoogle Scholar
  13. Kohagen M, Mason PE, Jungwirth P (2014) Accurate description of calcium solvation in concentrated aqueous solutions. J Phys Chem B 118:7902–7909CrossRefGoogle Scholar
  14. Moon DH, Dermatas D, Menounou N (2004) Arsenic immobilization by calcium-arsenic precipitates in lime treated soils. Sci Total Environ 330:171–185CrossRefGoogle Scholar
  15. Neupane G, Donahoe RJ (2012) Calcium-phosphate treatment of contaminated soil for arsenic immobilization. Appl Geochem. 28:145–154CrossRefGoogle Scholar
  16. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  17. Rietra RPJJ, Hiemstra T, van Riemsdijk WH (2001) Interaction between calcium and phosphate adsorption on goethite. Environ Sci Technol 35:3369–3374CrossRefGoogle Scholar
  18. Saalfield SL, Bostick BC (2010) Synergistic effect of calcium and bicarbonate in enhancing arsenate release from ferrihydrite. Geochim Cosmochim Acta 74:5171–5186CrossRefGoogle Scholar
  19. Schwertmann U, Cornell RM (2000) Iron xxides in the laboratory: preparation and characterization. Wiley-VCH, HobokenCrossRefGoogle Scholar
  20. Sepulcre F, Proietti MG, Benfatto M et al (2004) A quantitative XANES analysis of the calcium high-affinity binding site of the purple membrane. Biophys J 87:513–520CrossRefGoogle Scholar
  21. Song XW, Boily JF (2013) Water vapor adsorption on goethite. Environ Sci Technol 47:7171–7177CrossRefGoogle Scholar
  22. van der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718CrossRefGoogle Scholar
  23. Weidler PG, Hug SJ, Wetche TP et al (1998) Determination of growth rates of (100) and (110) faces of synthetic goethite by scanning force microscopy. Geochim Cosmochim Acta 62:3407–3412CrossRefGoogle Scholar
  24. Weng LP, Koopal LK, Hiemstra T et al (2005) Interactions of calcium and fulvic acid at the goethite–water interface. Geochim Cosmochim Acta 69:325–339CrossRefGoogle Scholar
  25. Yang HX, Lu R, Downs RT et al (2006) Goethite, alpha-FeO(OH), from single-crystal data. Acta Crystallogr E 62:I250–I252CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yongfeng Jia
    • 1
  • Yang Zheng
    • 1
    • 2
  • Jinru Lin
    • 1
  • Guoqing Zhang
    • 1
    • 2
  • Xu Ma
    • 1
    • 2
  • Xin Wang
    • 1
  • Shaofeng Wang
    • 1
    Email author
  1. 1.Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied EcologyChinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations