Different Uptake of Metal Dioxide Nanoparticles (Ceria Nanoparticles, Zirconia Nanoparticles and Silica Nanoparticles) by Wheat

  • Wanying Zhang
  • Yingnan Huang
  • Hua Gong
  • Fei DangEmail author
  • Dongmei Zhou


Metal dioxide nanoparticles (NPs) are produced in ever-increasing amounts and widely used in industrial, medical and consumer products. They may pose potential risks to the environment. In this study we quantitatively evaluated the phytoavailability of CeO2NPs, ZrO2NPs and SiO2NPs to wheat (Triticum aestivum L.). Metal dioxide NPs showed distinct differences in uptake, with uptake rate constants of 90.2 ± 9.9, 12.2 ± 2.5, 0.4 ± 0.02 and 0.9 ± 0.1 L kg−1 h−1 for ZrO2NPs, CeO2NPs, SiO2NPs (13 nm) and SiO2NPs (25 nm), respectively. However, such difference cannot be generalized by single factor of NP characteristics and/or root damage. This study provides fundamental information for NP uptake by crop plants.


Metal dioxide nanoparticles Uptake NP characteristics Root damage Factor analysis 



We thank the National Natural Science Foundation of China (Grant Nos. 41430752 and 41671484).


  1. Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22:1841–1853. CrossRefGoogle Scholar
  2. Baalousha M, Cornelis G, Kuhlbusch TAJ, Lynch I, Nickel C, Peijnenburg W, van den Brink NW (2016) Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends. Environ Sci Nano 3:323–345. CrossRefGoogle Scholar
  3. Bao D, Oh ZG, Chen Z (2016) Characterization of silver nanoparticles internalized by arabidopsis plants using single particle ICP-MS analysis. Front Plant Sci 7:32. Google Scholar
  4. Chen YZ, Si YB, Zhou DM, Dang F (2017) Differential bioaccumulation patterns of nanosized and dissolved silver in a land snail Achatina fulica. Environ Pollut 222:50–57. CrossRefGoogle Scholar
  5. Croteau MN, Misra SK, Luoma SN, Valsami-Jones E (2014) Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures. Environ Sci Technol 48:10929–10937. CrossRefGoogle Scholar
  6. da Cruz TNM et al (2017) Shedding light on the mechanisms of absorption and transport of ZnO nanoparticles by plants via in vivo X-ray spectroscopy. Environ Sci Nano 4:2367–2376. CrossRefGoogle Scholar
  7. Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H (2015) Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environ Sci Technol 49:3007–3014. CrossRefGoogle Scholar
  8. Dev A, Srivastava AK, Karmakar S (2018) Nanomaterial toxicity for plants. Environ Chem Lett 16:85–100. CrossRefGoogle Scholar
  9. Geisler-Lee J et al (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–337. CrossRefGoogle Scholar
  10. Geitner NK et al (2018) Size-based differential transport, uptake, and mass distribution of ceria (CeO2) nanoparticles in wetland mesocosms. Environ Sci Technol 52:9768–9776. CrossRefGoogle Scholar
  11. Gorka DE, Liu J (2016) Effect of direct contact on the phytotoxicity of silver nanomaterials. Environ Sci Technol 50:10370–10376. CrossRefGoogle Scholar
  12. Li H, Ye X, Guo X, Geng Z, Wang G (2016) Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. J Hazard Mater 314:188–196. CrossRefGoogle Scholar
  13. Li C-C, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou D-M (2017) Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology 11:699–709. CrossRefGoogle Scholar
  14. Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931. CrossRefGoogle Scholar
  15. Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122. CrossRefGoogle Scholar
  16. Portier J, Campet G, Poquet A, Marcel C, Subramanian MA (2001) Degenerate semiconductors in the light of electronegativity and chemical hardness. Int J Inorg Mater 3:1039–1043. CrossRefGoogle Scholar
  17. Pradas del Real AE, Vidal V, Carriere M, Castillo-Michel H, Levard C, Chaurand P, Sarret G (2017) Silver nanoparticles and wheat roots: a complex interplay. Environ Sci Technol 51:5774–5782. CrossRefGoogle Scholar
  18. Qian L, Chen B, Hu D (2013) Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environ Sci Technol 47:2737–2745. CrossRefGoogle Scholar
  19. Rai PK, Kumar V, Lee S, Raza N, Kim K-H, Ok YS, Tsang DCW (2018) Nanoparticle-plant interaction: implications in energy, environment, and agriculture. Environ Int 119:1–19. CrossRefGoogle Scholar
  20. Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2016) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicology 10:257–278. Google Scholar
  21. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915. CrossRefGoogle Scholar
  22. Spielman-Sun E, Lombi E, Donner E, Howard D, Unrine JM, Lowry GV (2017) Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ Sci Technol 51:7361–7368. CrossRefGoogle Scholar
  23. Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040. CrossRefGoogle Scholar
  24. Wang Q, Li M, Wang R, Song Y, Dang F, Zhou D (2018) The uptake and toxicity of silver nanoparticles to wheat China. Environ Sci 38:1149–1156Google Scholar
  25. Yin L et al (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367. CrossRefGoogle Scholar
  26. Zhai G, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146–151. CrossRefGoogle Scholar
  27. Zhang H et al (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–4368. CrossRefGoogle Scholar
  28. Zhang S, Gao H, Bao G (2015) Physical principles of nanoparticle cellular endocytosis. ACS Nano 9:8655–8671. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wanying Zhang
    • 1
    • 2
  • Yingnan Huang
    • 1
    • 2
  • Hua Gong
    • 1
  • Fei Dang
    • 1
    Email author
  • Dongmei Zhou
    • 1
  1. 1.Institute of Soil ScienceChinese Academy of SciencesNanjingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations