Advertisement

Levels of Volatile Carbonyl Compounds in the Atlantic Rainforest, in the City of Rio de Janeiro

  • André Luis Braga
  • Bruno Siciliano
  • Guilherme Dantas
  • Michelle André
  • Cleyton Martins da Silva
  • Graciela ArbillaEmail author
Article

Abstract

When Europeans arrived in America, the Brazilian Atlantic rainforest covered approximately 1,290,000 km2. Now, only 8% of the biome’s original vegetation remains. One of the largest areas is Tijuca Forest National Park. In this work, the concentrations of 13 carbonyl compounds in an isolated area inside Tijuca Forest, in an urban park with primary and secondary vegetation (Gericinó Natural Park) and in two typical urban areas (Tijuca District and the city of Nilópolis) were determined. The main compounds were formaldehyde and acetaldehyde. The formaldehyde mean concentrations were 0.98 ± 1.00, 1.27 ± 1.67, 3.09 ± 1.60 and 2.33 ± 2.17 μg m−3 for Tijuca Forest, Gericinó Natural Park, Tijuca District and the city of Nilópolis, respectively. The mean acetaldehyde concentrations were, for the same locations, 0.93 ± 1.05, 2.94 ± 2.54, 2.78 ± 0.91 and 5.48 ± 1.90 μg m−3. The results indicate that the compounds measured within the forest are transported from the city and that the trees play an important role in removing air pollutants. In contrast, the Gericinó protected area is heavily affected by urban emissions, and its capacity to dilute or absorb pollutants is low because of the sparse vegetation.

Keywords

Tijuca Forest Atlantic Forest Carbonyl compounds Air pollution 

Notes

Acknowledgements

The study was funded in part by FAPERJ, CNPq and CAPES. The authors also acknowledge the collaboration of the staff of Tijuca National Park and Gericinó Park.

References

  1. Artaxo P, Gatti LV, Leal AMC, Longo KM, Freitas SR, Lara LL, Pauliquevis TM, Procópio AS, Rizzo L (2005) Atmospheric chemistry in Amazonia: the forest and the biomass burning emissions controlling the composition of the Amazonian atmosphere. Acta Amazon 35:185–196CrossRefGoogle Scholar
  2. Bellard C, Leclerc C, Leroy B, Bakkenes M, Veloz S, Thuiller W, Courchamp F (2014) Vulnerability of biodiversity hotspots to global change. Glob Ecol Biogeogr 23:1376–1386CrossRefGoogle Scholar
  3. Brickus LSR, Cardoso JN, de Aquino Neto FR (1998) Distribution of indoor and outdoor air pollutants in Rio de Janeiro, Brazil: implications to indoor air quality in bayside offices. Environ Sci Technol 32:3485–3490CrossRefGoogle Scholar
  4. Campos ICB, Pimentel AS, Corrêa SM, Arbilla G (1999) Simulation of air pollution from mobile source emissions in the city of Rio de Janeiro. J Braz Chem Soc 10:203–208CrossRefGoogle Scholar
  5. Correa SM, Arbilla G (2008) Carbonyl emissions in diesel and biodiesel exhaust. Atmos Environ 42:769–775CrossRefGoogle Scholar
  6. Correa SM, Arbilla G, Martins EM, Quitério SL, Guimarães CS, Gatti LV (2010) Five years of formaldehyde and acetaaldehyde monitoring in the Rio de Janeiro downtown area – Brazil. Atmos Environ 44:2302–2308CrossRefGoogle Scholar
  7. Custodio D, Guimarães CS, Varandas L, Arbilla G (2010) Pattern of volatile aldehydes and aromatic hydrocarbons in the largest urban rainforest in the Americas. Chemosphere 79:1064–1069CrossRefGoogle Scholar
  8. de Almeida Azevedo D, Moreira LS, de Siquiera DS (1999) Composition of extractable organic matter in aerosols from urban areas of Rio de Janeiro city, Brazil. Atmos Environ 33:4987–5001CrossRefGoogle Scholar
  9. Grosjean D, Miguel AH, Tavares TM (1990) Urban air pollution in Brazil: acetaldheyde and other carbonyls. Atmos Environ 24B:101–106CrossRefGoogle Scholar
  10. Hockelmann C, Juttner F (2004) Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema. Water Sci Technol 49:47–54CrossRefGoogle Scholar
  11. IBGE (2018) Brasil, Rio de Janeiro. http://cidades.ibge.gov.br/xtras/perfil.php?codmun=330455. Accessed 30 Dec 2018
  12. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88CrossRefGoogle Scholar
  13. Kesselmeier J, Kuhn U, Wolf A, Andreae MO, Ciccioli P, Brancaleoni E, Frattoni M, Guenther A, Greenberg J, de Castro Vasconcelos P, Oliva T, Artaxo P (2000) Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmos Environ 34:4063–4072CrossRefGoogle Scholar
  14. Lipari F, Dasch JM, Scruggs WF (1984) Aldehyde emissions from wood-burning fireplaces. Environ Sci Technol 18:326–330CrossRefGoogle Scholar
  15. Nowak DJ, Hirabayashi S, Ellis E, Greenfield EJ (2014) Tree and forest effects on air quality and human health in the United States. Environ Pollut 193:119–129CrossRefGoogle Scholar
  16. Nowak DJ, Hirabayashib S, Doylec M, McGovernc M, Pasher J (2018) Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For Urban Green 29:40–48CrossRefGoogle Scholar
  17. Oliveira RL, Custódio DJ, de Rainho CR, Morais E, Felzenszwalb I, Corrêa SM, Azevedo DA, Arbilla G (2018) Polycyclic aromatic hydrocarbon patterns in the city of Rio de Janeiro. Air Qual Atmos Health 11:581–590CrossRefGoogle Scholar
  18. Pimentel AS, Arbilla G (1997) Simulação da química da atmosfera poluída por automóveis movidos a álcool. Quim Nova 20:252–260CrossRefGoogle Scholar
  19. R (2019). https://www.R-project.org/. Accessed 22 Mar 2019
  20. Scarano FR (2014) The Atlantic Forest: history that looks to the future. Conservação Internacional, Rio de JaneiroGoogle Scholar
  21. Scarano FR, Ceotto P (2015) Brazilian Atlantic Forest: impact, vulnerability, and adaptation to climate change. Biodivers Conserv 24:2319–2331CrossRefGoogle Scholar
  22. Silva CM, da Silva LL, Corrêa SM, Arbilla G (2016a) Kinetic and mechanistic reactivity. Isoprene impact on ozone levels in an urban area near Tijuca Forest, Rio de Janeiro. Bull Environ Contam Toxicol 97:781–785CrossRefGoogle Scholar
  23. Silva CM, da Silva LL, Souza ECCA, Oliveira RL, Corrêa SM, Arbilla G (2016b) Volatile organic compounds in the atmosphere of the botanical garden of the city of Rio de Janeiro. Bull Environ Contam Toxicol 97:653–658CrossRefGoogle Scholar
  24. Silva CM, Corrêa SM, Arbilla G (2018) Isoprene emissions and ozone formation in urban conditions: a case study in the city of Rio de Janeiro. Bull Environ Contam Toxicol 100:184–188CrossRefGoogle Scholar
  25. Tanner RL, Miguel AH, de Andrade JB, Gaffney JS, Streit GE (1988) Atmospheric chemistry of aldheydes: enhanced peroxyacetyl nitrate formation from ethanol-fueled vehicular emissions. Environ Sci Technol 22:1026–1034CrossRefGoogle Scholar
  26. Toxnet (2019a). Toxicology Data Network. Pentanal. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+851. Accessed 30 Jan 2019
  27. Toxnet (2019b). Toxicology Data Network. 4-Methylbenzaldheyde. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+5361. Accessed 30 Jan 2019
  28. US EPA (1999) Compendium Method TO-11A. https://www3.epa.gov/ttnamti1/files/ambient/airtox/to-11ar.pdf. Accessed 30 Dec 2018
  29. Yañes-Serrano AM, Nolscher AC, Bourtsoukidis E, Derstroff B, Zannoni N, Gros V, Lanza M, Brito J, Noe SM, House E, Hewitt CN, Langford B, Nemitz E, Behrendt T, Williams J, Artaxo P, Andreae MO, Kesselmeier J (2016) Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments. Atmos Chem Phys 16:10965–10984CrossRefGoogle Scholar
  30. Yu Y, Wen S, Lu H, Feng Y, Wang X, Sheng G, Fu J (2008) Characteristics of atmospheric carbonyls and VOCs in forest park in South China. Environ Monit Assess 137:275–285CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Química, Centro de TecnologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Universidade Veiga de AlmeidaRio de JaneiroBrazil

Personalised recommendations