Advertisement

Effect of Multi-walled Carbon Nanotubes on the Toxicity of Triphenyltin to the Marine Copepod Tigriopus japonicus

  • Xianliang Yi
  • Mingyue Yu
  • Zhaochuan Li
  • Tongtong Chi
  • Siyuan Jing
  • Keke Zhang
  • Wentao Li
  • Minghuo WuEmail author
Article

Abstract

Marine organisms are often exposed to a mixture of various pollutants in marine environment (i.e., nanoparticles, organic pollutants). The present study investigated the potential effects of multi-walled carbon nanotubes (MWCNTs) on the toxicity of triphenyltin chloride (TPTCl). The results revealed an antagonistic interaction between MWCNTs and TPTCl on the copepod through 96 h acute exposure, which was attributed to the adsorption of TPTCl to MWCNTs and aggregation of MWCNTs in the test solutions. Results of 21 days’ chronic exposure showed that the effect concentration of MWCNTs could be 100 times lower than that of acute exposure. The exposure to binary mixture of MWCNT (1.0 mg/L) and TPTCl (0.3 µg/L) caused a reduction by 94% for the 3rd time spawning and 83% for the total number of hatched nauplii. The ingestion and exterior attachment of MWCNTs to the copepod might be the main reasons causing the adverse effect in reproduction.

Keywords

Nanoparticles Chronic exposure Antagonistic Reproduction 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants Nos. 41606131, 21205058), the open foundation of Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration (Grant No. 201812), and Dalian University of Technology via the Fundamental Research Funds for the Central Universities (DUT17LK45).

References

  1. Apul OG, Karanfil T (2015) Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res 68:34–55.  https://doi.org/10.1016/j.watres.2014.09.032 CrossRefGoogle Scholar
  2. Arndt DA, Moua M, Chen J, Klaper RD (2013) Core structure and surface functionalization of carbon nanomaterials alter impacts to daphnids mortality, reproduction, and growth: acute assays do not predict chronic exposure impacts. Envir Sci Technol 47:9444–9452.  https://doi.org/10.1021/es4030595 CrossRefGoogle Scholar
  3. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297:787–792.  https://doi.org/10.1126/science.1060928 CrossRefGoogle Scholar
  4. Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60). Aquat Toxicol 86:379–387.  https://doi.org/10.1016/j.aquatox.2007.11.019 CrossRefGoogle Scholar
  5. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679.  https://doi.org/10.1016/j.cbpa.2005.10.006 CrossRefGoogle Scholar
  6. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539.  https://doi.org/10.1126/science.1222453 CrossRefGoogle Scholar
  7. Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. TrAC-Trend Anal Chem 30:517–527.  https://doi.org/10.1016/j.trac.2010.11.014 CrossRefGoogle Scholar
  8. Freitas R, Coppola F, De Marchi L, Codella V, Pretti C, Chiellini F, Morelli A, Polese G, Soares AMVM, Figueira E (2018) The influence of arsenic on the toxicity of carbon nanoparticles in bivalves. J Hazard Mater 358:484–493.  https://doi.org/10.1016/j.jhazmat.2018.05.056 CrossRefGoogle Scholar
  9. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene – an overview. Environ Sci Pollut R 20:2828–2843.  https://doi.org/10.1007/s11356-013-1524-1 CrossRefGoogle Scholar
  10. Kim KT, Klaine SJ, Lin S, Ke PC, Kim SD (2010) Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna. Environ Toxicol Chem 29:122–126.  https://doi.org/10.1002/etc.8 CrossRefGoogle Scholar
  11. Kwok KWH, Leung KMY, Flahaut E, Cheng J, Cheng SH (2010) Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods. Nanomedicine 5:951–961.  https://doi.org/10.2217/NNM.10.59 CrossRefGoogle Scholar
  12. Lee JW, Won E-J, Kang H-M, Hwang D-S, Kim D-H, Kim R-K, Lee S-J, Lee J-S (2016) Effects of multi-walled carbon nanotube (MWCNT) on antioxidant depletion, the ERK signaling pathway, and copper bioavailability in the copepod (Tigriopus japonicus). Aquat Toxicol 171:9–19.  https://doi.org/10.1016/j.aquatox.2015.12.005 CrossRefGoogle Scholar
  13. Liu J, Wang W-X (2015) Reduced cadmium accumulation and toxicity in Daphnia Magna under carbon nanotube exposure. Environ Toxicol Chem 34:2824–2832.  https://doi.org/10.1002/etc.3122 CrossRefGoogle Scholar
  14. Metzelder F, Funck M, Schmidt TC (2018) Sorption of heterocyclic organic compounds to multiwalled carbon nanotubes. Environ Sci Tech 52:628–637.  https://doi.org/10.1021/acs.est.7b05205 CrossRefGoogle Scholar
  15. Pyrzynska K (2008) Carbon nanotubes as a new solid-phase extraction material for removal and enrichment of organic pollutants in water. Sep Purif Rev 37:374–391.  https://doi.org/10.1080/15422110802178843 CrossRefGoogle Scholar
  16. Raisuddin S, Kwok KWH, Leung KMY, Schlenk D, Lee J-S (2007) The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics. Aquat Toxicol 83:161–173.  https://doi.org/10.1016/j.aquatox.2007.04.005 CrossRefGoogle Scholar
  17. Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410.  https://doi.org/10.1016/j.cej.2010.08.045 CrossRefGoogle Scholar
  18. Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B (2013) Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Tech 47:7012–7019.  https://doi.org/10.1021/es304016u CrossRefGoogle Scholar
  19. Tao X, He Y, Fortner JD, Chen Y, Hughes JB (2013) Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): enhanced toxicity and accumulation of copper in Daphnia magna. Chemosphere 92:1245–1252.  https://doi.org/10.1016/j.chemosphere.2013.04.056 CrossRefGoogle Scholar
  20. Yan Z, Liu Y, Sun H, Lu G (2018) Influence of multiwall carbon nanotubes on the toxicity of 17ß-estradiol in the early life stages of zebrafish. Environ Sci Pollut R 25:7566–7574.  https://doi.org/10.1007/s11356-017-1063-2 CrossRefGoogle Scholar
  21. Yi AX, Leung KMY, Lam MHW, Lee J-S, Giesy JP (2012) Review of measured concentrations of triphenyltin compounds in marine ecosystems and meta-analysis of their risks to humans and the environment. Chemosphere 89:1015–1025.  https://doi.org/10.1016/j.chemosphere.2012.05.080 CrossRefGoogle Scholar
  22. Yi AX, Han J, Lee J-S, Leung KMY (2014) Ecotoxicity of triphenyltin on the marine copepod Tigriopus japonicus at various biological organisations: from molecular to population-level effects. Ecotoxicology 23:1314–1325.  https://doi.org/10.1007/s10646-014-1274-y CrossRefGoogle Scholar
  23. Yi X, Zhang K, Han G, Yu M, Chi T, Jing S, Li Z, Zhan J, Wu M (2018) Toxic effect of triphenyltin in the presence of nano zinc oxide to marine copepod Tigriopus japonicus. Environ Pollut 243:687–692.  https://doi.org/10.1016/j.envpol.2018.09.038 CrossRefGoogle Scholar
  24. Zhang C, Chen X, Tan L, Wang J (2018) Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum. Environ Sci Pollut R 25:13127–13133.  https://doi.org/10.1007/s11356-018-1580-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xianliang Yi
    • 1
  • Mingyue Yu
    • 1
  • Zhaochuan Li
    • 1
  • Tongtong Chi
    • 1
  • Siyuan Jing
    • 1
  • Keke Zhang
    • 1
  • Wentao Li
    • 1
  • Minghuo Wu
    • 1
    Email author
  1. 1.School of Food and EnvironmentDalian University of TechnologyPanjinChina

Personalised recommendations