Evidence of Microplastic Ingestion by Fish from the Bahía Blanca Estuary in Argentina, South America

  • Andrés H. AriasEmail author
  • Ana C. Ronda
  • Ana L. Oliva
  • Jorge E. Marcovecchio


The aim of this study was to assess – for the first time – the occurrence and distribution of microplastics (MPs) in the gastrointestinal tracts (GITs) of a marine commercial fish species (Micropogonias furnieri) from the Bahía Blanca Estuary (BBE) in Argentina, and to evaluate fish potential associated stress. In order to do this, juveniles were sampled using artisanal fishing arts at two sampling locations. Basic measurements of individual fish were taken (total length, total weight, weight of the liver) and GITs were subsequently removed, digested with 30% H2O2 for 5 days at 60°C, filtered on Whatman paper and then dried. Samples were observed with a stereomicroscope, and it was demonstrated that 100% of the individuals contained microplastic particles in their GITs. In total, 241 microplastic particles were removed from the GITs of all fish. They were categorized as fibers (60.8%), pellets (28.9%), fragments (8.6%) and laminas (1.4%), and they ranged in size from 0.98 to > 5 mm. The average number of particles per fish was higher than that reported in previous global marine studies. Moreover, a positive correlation between the number of MPs per fish and hepatosomatic index was found, suggesting a probable stress in their health condition. These findings provide the first and southernmost evidence of microplastic contamination in biota from the Argentinean sea, which is found in the South Atlantic sea.


Plastic pollution Fish Fibers Estuary South America 



The authors are grateful to Enio Redondo and Beto Conte for their fishing skills in the field. This study was approved and financed by PICT 2015-0709, National Agency for the Promotion of the Science and Technology, PGI 24/ZQ12 (National South University) to Dr. Andrés H. Arias and PICT 2016-0540 granted to Ana C. Ronda, PhD.


  1. Abbasi S, Soltani N, Keshavarzi B, Moore F, Turner A, Hassanaghaei M (2018) Microplastics in different tissues of fish and prawn from the Musa estuary, Persian Gulf. Chemosphere 205:80–87CrossRefGoogle Scholar
  2. Akhbarizadeh R, Moore F, Keshavarzi B (2018) Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environ Pollut 232:154–163CrossRefGoogle Scholar
  3. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605CrossRefGoogle Scholar
  4. Arias AH, Spetter CV, Freije RH, Marcovecchio JE (2009) Polycyclic aromatic hydrocarbons in water, mussels (Brachidontes sp., Tagelus sp.) and fish (Odontesthes sp.) from Bahía Blanca Estuary, Argentina. Estuar Coast Shelf Sci 85(1):67–81CrossRefGoogle Scholar
  5. Arias AH, Vazquez-Botello A, Tombesi N, Ponce-Vélez G, Freije H, Marcovecchio J (2010) Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahía Blanca Estuary. Argentina. Environ Monit Assess 160(1–4):301CrossRefGoogle Scholar
  6. Arias AH, Pereyra MT, Marcovecchio JE (2011) Multi-year monitoring of estuarine sediments as ultimate sink for DDT, HCH, and other organochlorinated pesticides in Argentina. Environ Monit Assess 172(1–4):17–32CrossRefGoogle Scholar
  7. Arias AH, Piccolo MC, Spetter CV, Freije RH, Marcovecchio JE (2012) Lessons from multi-decadal oceanographic monitoring at an estuarine ecosystem in Argentina. Int J Environ Res 6(1):219–234Google Scholar
  8. Avio CG, Gorbi S, Regoli F (2015) Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic sea. Mar Environ Res 111:18–26CrossRefGoogle Scholar
  9. Bellas J, Martínez-Armental J, Martínez-Cámara A, Besada V, Martínez-Gómez C (2016) Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Mar Pollut Bull 109(1):55–60CrossRefGoogle Scholar
  10. Bessa F, Barría P, Neto JM, Frias JP, Otero V, Sobral P, Marques JC (2018) Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar Pollut Bull 128:575–584CrossRefGoogle Scholar
  11. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179CrossRefGoogle Scholar
  12. Cifuentes R, González J, Montoya G, Jara A, Ortíz N, Piedra P, Habit E (2012) Relación longitud-peso y factor de condición de los peces nativos del río San Pedro (cuenca del río Valdivia, Chile). Gayana (Concepción) 76:86–100CrossRefGoogle Scholar
  13. Collard F, Gilbert B, Compère P, Eppe G, Das K, Jauniaux T, Parmentier E (2017) Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environ Pollut 229:1000–1005CrossRefGoogle Scholar
  14. Costa MRD, Araújo FG (2003) Length-weight relationship and condition factor of Micropogonias furnieri (Desmarest)(Perciformes, Sciaenidae) in the Sepetiba Bay, Rio de Janeiro state. Brazil. Rev Bras Zoologia 20(4):685–690CrossRefGoogle Scholar
  15. Costanza R, d’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Raskin RG (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253CrossRefGoogle Scholar
  16. Craig SR, MacKenzie DS, Jones G, Gatlin DM III (2000) Seasonal changes in the reproductive condition and body composition of free-ranging red drum, Sciaenops ocellatus. Aquaculture 190(1–2):89–102CrossRefGoogle Scholar
  17. Farrell P, Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut 177:1–3CrossRefGoogle Scholar
  18. Foekema EM, De Gruijter C, Mergia MT, Van Franeker JA, Murk AJ, Koelmans AA (2013) Plastic in north sea fish. Environ Sci Technol 47(15):8818–8824CrossRefGoogle Scholar
  19. Frias JPGL, Otero V, Sobral P (2014) Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar Environ Res 95:89–95CrossRefGoogle Scholar
  20. Goede RW, Barton BA (1990) Biological indicators of stress in fish. Am Fish Soc Symp 8:93–108Google Scholar
  21. Jabeen K, Su L, Li J, Yang D, Tong C, Mu J, Shi H (2017) Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ Pollut 221:141–149CrossRefGoogle Scholar
  22. Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50(7):3315–3326CrossRefGoogle Scholar
  23. La Colla NS, Botté SE, Oliva AL, Marcovecchio JE (2017) Tracing Cr, Pb, Fe and Mn occurrence in the Bahía Blanca Estuary through commercial fish species. Chemosphere 175:286–293CrossRefGoogle Scholar
  24. Limbozzi F, Leitao TE (2008) Characterization of Bahía Blanca main existing pressures and their effects on the state indicators for surface and groundwater quality perspectives on integrated coastal zona management in South America. IST Press, Lisbon, pp 315–331Google Scholar
  25. López Cazorla A (2004) Peces. In: Piccolo MC, Hoffmeyer MS (eds) Ecosistema del Estuario de Bahía Blanca. EDIUNS (UNS), Bahía Blanca, pp 191–201Google Scholar
  26. Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ren H (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50(7):4054–4060CrossRefGoogle Scholar
  27. Lusher AL, Mchugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the english channel. Mar Pollut Bull 67(1–2):94–99CrossRefGoogle Scholar
  28. Martinho F, Leitão R, Neto JM, Cabral HN, Marques JC, Pardal MA (2007) The use of nursery areas by Juvenile fish in a temperate estuary. Portugal. Hydrobiologia 587(1):281–290CrossRefGoogle Scholar
  29. Nadal MA, Alomar C, Deudero S (2016) High levels of microplastic ingestion by the semipelagic fish bogue Boops boops (L.) around the Balearic islands. Environ Pollut 214:517–523CrossRefGoogle Scholar
  30. Nerland IL, Halsband C, Allan I, et al (2014). Microplastics in marine environments: occurrence, distribution and effectsGoogle Scholar
  31. Neves D, Sobral P, Ferreira JL, Pereira T (2015) Ingestion of microplastics by commercial fish off the Portuguese coast. Mar Pollut Bull 101(1):119–126CrossRefGoogle Scholar
  32. Oliva AL, Quintas PY, La Colla NS, Arias AH, Marcovecchio JE (2015) Distribution, sources, and potential ecotoxicological risk of polycyclic aromatic hydrocarbons in surface sediments from Bahía Blanca Estuary Argentina. Arch Environ Contam Toxicol 69(2):163–172CrossRefGoogle Scholar
  33. Oliva AL, La Colla NS, Arias AH, Blasina GE, Cazorla AL, Marcovecchio JE (2017a) Distribution and human health risk assessment of PAHs in four fish species from a SW Atlantic estuary. Environ Sci Pollut Res 24(23):18979–18990CrossRefGoogle Scholar
  34. Oliva AL, Arias AH, Quintas PY, Buzzi NS, Marcovecchio JE (2017b) Polycyclic aromatic hydrocarbons in mussels from a South American estuary. Arch Environ Contam Toxicol 72(4):540–551CrossRefGoogle Scholar
  35. Pazos RS, Bauer DE, Gómez N (2018) Microplastics integrating the coastal planktonic community in the inner zone of the Río de la Plata estuary (South America). Environ Pollut 243:134–142CrossRefGoogle Scholar
  36. Possatto FE, Barletta M, Costa MF, Do Sul JAI, Dantas DV (2011) Plastic debris ingestion by marine catfish: an unexpected fisheries impact. Mar Pollut Bull 62(5):1098–1102CrossRefGoogle Scholar
  37. Rochman CM (2015) The complex mixture, fate and toxicity of chemicals associated with plastic debris in the marine environment. Marine anthropogenic litter, vol 4. Springer, Cham, pp 117–140CrossRefGoogle Scholar
  38. Ronda AC, Oliva AL, Arias AH, Orazi MM, Marcovecchio JE (2019) Biomarker responses to polycyclic aromatic hydrocarbons in the native fish Ramnogaster arcuata South America. Int J Environ Res 13(1):77–89CrossRefGoogle Scholar
  39. Sadekarpawar S, Parikh P (2013) Gonadosomatic and hepatosomatic indices of freshwater fish Oreochromis mossambicus in response to a plant nutrient. World J Zool 8(1):110–118Google Scholar
  40. Sardiña P, Cazorla AL (2005) Feeding interrelationships and comparative morphology of two young sciaenids co-occurring in South-western Atlantic waters. Hydrobiologia 548(1):41–49CrossRefGoogle Scholar
  41. Sardiña et al., 2004. Ecología trófica de estadios juveniles de los esciénidos dominantes en el estuario de Bahía Blanca. Pescadilla de red (Cynoscion guatucupa) y corvina rubia (Micropogonias furnieri). Ph. D. Thesis, Universidad Nacional del SurGoogle Scholar
  42. Solé M, Antó M, Baena M, Carrasson M, Cartes JE, Maynou F (2010) Hepatic biomarkers of xenobiotic metabolism in 18 marine fish from NW Mediterranean shelf and slope waters in relation to some of their biological and ecological variables. Mar Environ Res 70(2):181–188CrossRefGoogle Scholar
  43. Vendel AL, Bessa F, Alves VEN, Amorim ALA, Patrício J, Palma ART (2017) Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures. Mar Pollut Bull 117(1–2):448–455CrossRefGoogle Scholar
  44. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto Argentino de Oceanografía (IADO-CONICET/UNS)Bahía BlancaArgentina
  2. 2.Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina
  3. 3.Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina
  4. 4.Universidad Tecnológica Nacional-Facultad Regional Bahía Blanca (UTN-FRBB)Bahía BlancaArgentina
  5. 5.Universidad de la Fraternidad de Agrupaciones Santo Tomás de AquinoMar del PlataArgentina

Personalised recommendations