Research Progress on Toxic Effects and Water Quality Criteria of Triclosan

  • Xin Zheng
  • Zhenguang YanEmail author
  • Peiyuan Liu
  • Juntao Fan
  • Shuping Wang
  • Pengyuan Wang
  • Tianxu Zhang
Focused Review


Triclosan (TCS) is an effective broad-spectrum antimicrobial agent that is widely used in personal care products. It has been detected in different environmental media, and poses high potential ecological risk. In this article, we carried out a literature review of recent studies on the toxic effects of TCS from different aspects at the molecular, cell, tissue, organ, and individual level. TCS can exhibit acute toxicity to aquatic organisms, affect the normal expression and physiological function of enzymes and genes, and produce cytotoxicity. Many studies have demonstrated that TCS exerts significant endocrine-disrupting effects on organisms, interfering the normal physiological functions of the reproductive, thyroid, and nervous systems via related signaling pathways. Moreover, we reported current research on the water quality criteria of TCS and discuss possible future research directions.


Triclosan Toxic effect Cytotoxicity Endocrine-disrupting effect Water quality criteria 



This work was financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment (Grant No. 2017ZX07301002-01).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ajao C, Andersson MA, Teplova VV et al (2015) Mitochondrial toxicity of triclosan on mammalian cells. Toxicol Rep 2:624–637Google Scholar
  2. Allmyr M, Panagiotidis G, Sparve E, Diczfalusy U, Sandborgh-Englund G (2009) Human exposure to triclosan via toothpaste does not change CYP3A4 activity or plasma concentrations of thyroid hormones. Basic Clin Pharmacol Toxicol 105(5):339–344Google Scholar
  3. Anette K, Pohl K, Altenburger R (2007) A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors. Environ Sci Pollut R 14(6):377–383Google Scholar
  4. Arias-Cavieres A, More J, Vicente JM et al (2018) Triclosan impairs hippocampal synaptic plasticity and spatial memory in male rats. Front Mol Neurosci 11:429Google Scholar
  5. Axelstad M, Boberg J, Vinggaard AM, Christiansen S, Hass U (2013) Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring. Food Chem Toxicol 59:534–540Google Scholar
  6. Binelli A, Cogni D, Parolini M, Riva C, Provini A (2009) Cytotoxic and genotoxic effects of in vitro exposure to triclosan and trimethoprim on zebra mussel (Dreissena polymorpha) hemocytes. Comp Biochem Physiol C 150(1):50–56Google Scholar
  7. Brusselmans K, Swinnen J (2009) The lipogenic switch in cancer. Mitochondria and cancer. Springer, New York, pp 39–59Google Scholar
  8. Byford JR, Shaw LE, Drew MG, Pope GS, Sauer MJ, Darbre PD (2002) Oestrogenic activity of parabens in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol 80(1):49–60Google Scholar
  9. Canadian Environmental Protection Act (CEPA) (1999) Toxic substances lists: schedule 1. Government of Canada. Accessed 11 July 2018
  10. Capdevielle M, Van Egmond R, Whelan M et al (2008) Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integr Environ Assess Manag 4(1):15–23Google Scholar
  11. Chalew TE, Halden RU (2009) Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J Am Water Works Assoc 45(1):4–13Google Scholar
  12. Chapman PM (2002) Ecological risk assessment (ERA) and hormesis. Sci Total Environ 288(1–2):131–140Google Scholar
  13. Chen ZF, Ying GG, Liu YS, Zhang QQ, Zhao JL, Liu SS (2014) Triclosan as a surrogate for household biocides: an investigation into biocides in aquatic environments of a highly urbanized region. Water Res 58:269–279Google Scholar
  14. Cherednichenko G, Zhang R, Bannister RA et al (2012) Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle. Proc Natl Acad Sci USA 109(35):14158–14163Google Scholar
  15. Christen V, Crettaz P, Oberli-Schrammli A, Fent K (2010) Some flame retardants and the antimicrobials triclosan and triclocarban enhance the androgenic activity in vitro. Chemosphere 81(10):1245–1252Google Scholar
  16. Chu S, Metcalfe CD (2007) Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry. J Chromatogr A 1164(1–2):212–218Google Scholar
  17. Crofton KM, Paul KB, Devito MJ, Hedge JM (2007) Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environ Toxicol Pharmacol 24(2):194–197Google Scholar
  18. Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31(4):285–311Google Scholar
  19. Darbre PD, Byford JR, Shaw LE, Horton RA, Pope GS, Sauer MJ (2002) Oestrogenic activity of isobutylparaben in vitro and in vivo. J Appl Toxicol 22(4):219–226Google Scholar
  20. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(Suppl 6):907–938Google Scholar
  21. Dayan AD (2007) Risk assessment of triclosan [Irgasan] in human breast milk. Food Chem Toxicol 45(1):125–129Google Scholar
  22. Dayan J, Yoshida K (2007) Psychological and pharmacological treatments of mood and anxiety disorders during pregnancy and postpartum. Review and synthesis. J Gynecol Obstet Biol Reprod (Paris) 36(6):530–548Google Scholar
  23. Deepa PR, Vandhana S, Jayanthi U, Krishnakumar S (2012) Therapeutic and toxicologic evaluation of anti-lipogenic agents in cancer cells compared with non-neoplastic cells. Basic Clin Pharmacol Toxicol 110(6):494–503Google Scholar
  24. Delorenzo ME, Fleming J (2008) Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta. Arch Environ Contam Toxicol 54(2):203–210Google Scholar
  25. Dussault EB, Balakrishnan VK, Sverko E, Solomon KR, Sibley PK (2008) Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environ Toxicol Chem 27(2):425–432Google Scholar
  26. Falisse E, Voisin AS, Silvestre F (2017) Impacts of triclosan exposure on zebrafish early-life stage: toxicity and acclimation mechanisms. Aquat Toxicol 189:97–107Google Scholar
  27. Foran CM, Bennett ER, Benson WH (2000) Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar Environ Res 50(1–5):153–156Google Scholar
  28. Forgacs AL, Ding Q, Jaremba RG, Huhtaniemi IT, Rahman NA, Zacharewski TR (2012) BLTK1 murine Leydig cells: a novel steroidogenic model for evaluating the effects of reproductive and developmental toxicants. Toxicol Sci 127(2):391–402Google Scholar
  29. Gao HP, Zhou XF, Zhang YL, Chen JB (2012) The toxic effect of triclosan on the aquatic organisms. Environ Chem 31(8):1145–1149. (in Chinese)Google Scholar
  30. Gillis JD, Price GW, Prasher S (2017) Lethal and sub-lethal effects of triclosan toxicity to the earthworm Eisenia fetida assessed through GC-MS metabolomics. J Hazard Mater 323(Pt A):203–211Google Scholar
  31. Guo LW, Wu Q, Green B et al (2012) Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells. Toxicol Appl Pharmacol 262(2):117–123Google Scholar
  32. Halden RU (2014) On the need and speed of regulating triclosan and triclocarban in the United States. Environ Sci Technol 48(7):3603–3611Google Scholar
  33. Henry ND, Fair PA (2013) Comparison of in vitro cytotoxicity, estrogenicity and anti-estrogenicity of triclosan, perfluorooctane sulfonate and perfluorooctanoic acid. J Appl Toxicol 33(4):265–272Google Scholar
  34. Honkisz E, Zieba-Przybylska D, Wojtowicz AK (2012) The effect of triclosan on hormone secretion and viability of human choriocarcinoma JEG-3 cells. Reprod Toxicol 34(3):385–392Google Scholar
  35. Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H, Ishibashi Y (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat Toxicol 67(2):167–179Google Scholar
  36. James MO, Li W, Summerlot DP, Rowland-Faux L, Wood CE (2010) Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. Environ Int 36(8):942–949Google Scholar
  37. Kim JY, Yi BR, Go RE, Hwang KA, Nam KH, Choi KC (2014) Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway. Environ Toxicol Pharmacol 37(3):1264–1274Google Scholar
  38. Kim SH, Hwang KA, Shim SM, Choi KC (2015) Growth and migration of LNCaP prostate cancer cells are promoted by triclosan and benzophenone-1 via an androgen receptor signaling pathway. Environ Toxicol Pharmacol 39(2):568–576Google Scholar
  39. Kumar V, Chakraborty A, Kural MR, Roy P (2009) Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan. Reprod Toxicol 27(2):177–185Google Scholar
  40. Lan Z, Hyung Kim T, Shun Bi K, Hui Chen X, Sik Kim H (2015) Triclosan exhibits a tendency to accumulate in the epididymis and shows sperm toxicity in male Sprague-Dawley rats. Environ Toxicol 30(1):83–91Google Scholar
  41. Lee HR, Hwang KA, Nam KH, Kim HC, Choi KC (2014) Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem Res Toxicol 27(5):834–842Google Scholar
  42. Liang X, Nie X, Ying G, An T, Li K (2013) Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach. Chemosphere 90(3):1281–1288Google Scholar
  43. Lin D, Zhou QX, Xie XJ, Liu Y (2010) Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia fetida). Chemosphere 81(10):1328–1333Google Scholar
  44. Lin D, Li Y, Zhou Q, Xu Y, Wang D (2014) Effect of triclosan on reproduction, DNA damage and heat shock protein gene expression of the earthworm Eisenia fetida. Ecotoxicology 23(10):1826–1832Google Scholar
  45. Liu B, Wang Y, Fillgrove KL, Anderson VE (2002) Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother Pharmacol 49(3):187–193Google Scholar
  46. Ma H, Zheng L, Li Y et al (2013) Triclosan reduces the levels of global DNA methylation in HepG2 cells. Chemosphere 90(3):1023–1029Google Scholar
  47. Menzel R, Swain SC, Hoess S et al (2009) Gene expression profiling to characterize sediment toxicity—a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genom 10:160–174Google Scholar
  48. Miyoshi N. Kawano T, Tanaka M, Kadono T, Kosaka T, Kunimoto M, Takahashi T, Hosoya H (2003) Use of paramecium species in bioassays for environmental risk management: determination of IC50 values for water pollutants. J Health Sci 49(6):429–435Google Scholar
  49. Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Aquatic toxicity of triclosan. Environ Toxicol Chem 21(7):1338–1349Google Scholar
  50. Paul KB, Hedge JM, DeVito MJ, Crofton KM (2010) Short-term exposure to triclosan decreases thyroxine in vivo via upregulation of hepatic catabolism in young Long-Evans rats. Toxicol Sci 113(2):367–379Google Scholar
  51. Paul KB, Hedge JM, Bansal R et al (2012) Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: a dynamic and kinetic evaluation of a putative mode-of-action. Toxicology 300(1–2):31–45Google Scholar
  52. Paul KB, Thompson JT, Simmons SO, Vanden Heuvel JP, Crofton KM (2013) Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors. Toxicol In Vitro 27(7):2049–2060Google Scholar
  53. Pedriali A (2013) Cyto-genotoxic effects and protein alterations induced by some pharmaceutical compounds and illicit drugs on non-target organisms. University of Milan, Milan, pp. 1–166Google Scholar
  54. Peng Y, Luo Y, Nie XP, Liao W, Yang YF, Ying GG (2013) Toxic effects of triclosan on the detoxification system and breeding of Daphnia magna. Ecotoxicology 22(9):1384–1394Google Scholar
  55. Pinto PIS, Guerreiro EM, Power DM (2013) Triclosan interferes with the thyroid axis in the zebra fish (Danio rerio). Toxicol Res 2:60–69Google Scholar
  56. Pruden A (2014) Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environ Sci Technol 48(1):5–14Google Scholar
  57. Raut SA, Angus RA (2010) Triclosan has endocrine-disrupting effects in male western mosquitofish, Gambusia affinis. Environ Toxicol Chem 29(6):1287–1291Google Scholar
  58. Ros-Llor I, Lopez-Jornet P (2014) Cytogenetic analysis of oral mucosa cells, induced by chlorhexidine, essential oils in ethanolic solution and triclosan mouthwashes. Environ Res 132:140–145Google Scholar
  59. Sadowski MC, Pouwer RH, Gunter JH, Lubik AA, Quinn RJ, Nelson CC (2014) The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget 5(19):9362–9381Google Scholar
  60. Sahu VK, Karmakar S, Kumar S, Shukla SP, Kumar K (2018) Triclosan toxicity alters behavioral and hematological parameters and vital antioxidant and neurological enzymes in Pangasianodon hypophthalmus (Sauvage, 1878). Aquat Toxicol 202:145–152Google Scholar
  61. Sandborgh-Englund G, Adolfsson-Erici M, Odham G, Ekstrand J (2006) Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol Environ Health A 69(20):1861–1873Google Scholar
  62. Schmid B, Rippmann JF, Tadayyon M, Hamilton BS (2005) Inhibition of fatty acid synthase prevents preadipocyte differentiation. Biochem Biophys Res Commun 328(4):1073–1082Google Scholar
  63. Schuur AG, Legger FF, van Meeteren ME et al (1998) In vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons. Chem Res Toxicol 11(9):1075–1081Google Scholar
  64. Stebbing AR (1998) A theory for growth hormesis. Mutat Res 403(1–2):249–258Google Scholar
  65. Stoker TE, Gibson EK, Zorrilla LM (2010) Triclosan exposure modulates estrogen-dependent responses in the female Wistar rat. Toxicol Sci 117(1):45–53Google Scholar
  66. Szychowski KA, Sitarz AM, Wojtowicz AK (2015) Triclosan induces Fas receptor-dependent apoptosis in mouse neocortical neurons in vitro. Neuroscience 284:192–201Google Scholar
  67. Szychowski KA, Wnuk A, Rzemieniec J, Kajta M, Leszczynska T, Wojtowicz AK (2019) Triclosan-evoked neurotoxicity involves NMDAR subunits with the specific role of GluN2A in caspase-3-dependent apoptosis. Mol Neurobiol 56(1):1–12Google Scholar
  68. Tamura I, Kanbara Y, Saito M et al (2012) Triclosan, an antibacterial agent, increases intracellular Zn(2+) concentration in rat thymocytes: its relation to oxidative stress. Chemosphere 86(1):70–75Google Scholar
  69. Tang Y, M MV, Wu Y, Beland FA, Olson GR, Fang JL (2018) Role of peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARalpha-mediated species differences in triclosan-induced liver toxicity. Arch Toxicol 92(11):3391–3402Google Scholar
  70. Tatarazako N, Ishibashi H, Teshima K, Kishi K, Arizono K (2004) Effects of triclosan on various aquatic organisms. Environ Sci 11(2):133–140Google Scholar
  71. USEPA (1992) Pesticide ecotoxicity database (formerly: environmental effects database. (EEDB)). Environmental Fate and Effects Division, Washington, DCGoogle Scholar
  72. Veldhoen N, Skirrow RC, Osachoff H et al (2006) The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol 80(3):217–227Google Scholar
  73. Wang XN, Liu ZT, Yan ZG et al (2013) Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species. J Hazard Mater 260:1017–1022Google Scholar
  74. Wang C, Yu Z, Shi X et al (2018a) Triclosan enhances the clearing of pathogenic intracellular Salmonella or Candida albicans but disturbs the intestinal microbiota through mTOR-independent autophagy. Front Cell Infect Microbiol 8:49Google Scholar
  75. Wang F, Xu R, Zheng F, Liu H (2018b) Effects of triclosan on acute toxicity, genetic toxicity and oxidative stress in goldfish (Carassius auratus). Exp Anim 67(2):219–227Google Scholar
  76. Witorsch RJ (2014) Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products. Crit Rev Toxicol 44(6):535–555Google Scholar
  77. Wu F, Meng W, Zhao X, Li H, Zhang R, Cao Y, Liao H (2010) China embarking on development of its own national water quality criteria system. Environ Sci Technol 44(21):7992–7993Google Scholar
  78. Wu XY, Peng Y, Liao W et al (2013) Effects of Ibuprofen on the phase I metabolic enzymes and antioxidant defence system of the Yellow Catfish (Pelteobagrus fulvidraco). Acta Scientiae Circumstantiae 33(4):1208–1214Google Scholar
  79. Xia P, Zhang X, Xie Y, Guan M, Villeneuve DL, Yu H (2016) Functional toxicogenomic assessment of triclosan in human HepG2 cells using genome-wide CRISPR-Cas9 screening. Environ Sci Technol 50(19):10682–10692Google Scholar
  80. Yueh MF, Taniguchi K, Chen S et al (2014) The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proc Natl Acad Sci USA 111(48):17200–17205Google Scholar
  81. Zaltauskaite J, Miskelyte D (2018) Biochemical and life cycle effects of triclosan chronic toxicity to earthworm Eisenia fetida. Environ Sci Pollut Res Int 25(19):18938–18946Google Scholar
  82. Zhao JL, Zhang QQ, Chen F et al (2013) Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: implications for controlling of urban domestic sewage discharge. Water Res 47(1):395–405Google Scholar
  83. Zhou SB, Zhou XF, Zhang YL, Shi L (2008) The research for occurrence, transport and transformation rules of triclosan in water environment. Environ Pollut Prev 30(10):71–74 (in Chinese)Google Scholar
  84. Zorrilla LM, Gibson EK, Jeffay SC et al (2009) The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicol Sci 107(1):56–64Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xin Zheng
    • 1
  • Zhenguang Yan
    • 1
    Email author
  • Peiyuan Liu
    • 2
  • Juntao Fan
    • 1
  • Shuping Wang
    • 1
  • Pengyuan Wang
    • 1
  • Tianxu Zhang
    • 1
  1. 1.State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingPeople’s Republic of China
  2. 2.School of Life SciencesTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations