Advertisement

Assessing Human Health Risks Associated with Consumption of Metal Content in Shrimp from NW Mexico

  • C. C. Osuna-Martínez
  • M. G. Frías-Espericueta
  • B. Y. Ramos-Magaña
  • M. F. Soto-Jiménez
  • Y. Brau-Ibarra
  • L. A. Félix-Salazar
  • J. I. Osuna-López
  • M. Aguilar-Juárez
  • D. Voltolina
  • C. G. Delgado-AlvarezEmail author
Article

Abstract

Shrimp of Farfantepenaeus californiensis (78 groups) and Litopenaeus stylirostris (14 groups) were caught in the northwestern fishing zones in Mexico during the 2014–2015 fishing season (September–February); both shrimp species have high commercial value. Muscle, hepatopancreas and exoskeleton were analyzed to determine their metal contents. For F. californiensis, the highest Cd, Pb and Zn contents were determined in specimens caught off the State of Baja California Sur (BCS) with 22.4 ± 8.9 (hepatopancreas), 2.83 ± 4.63 (muscle), and 748.5 ± 1567 (muscle) µg/g, in the regions off Mulegé, Los Cabos and Los Cabos, respectively. For L. stylirostris, the fishing zone of Comundú (BCS) showed higher Cd (12.3 ± 11.5 µg/g), Cu (569.1 ± 646.5 µg/g) and Zn (549.7 ± 400.7 µg/g) contents; all values were determined in the hepatopancreas. Regarding the hazard quotient and total hazard quotient calculated in this study, the consumption of marine shrimp caught off NW Mexico does not represent a risk to human health (both < 1).

Keywords

Hazard quotient Shrimp Metal Risk assessment 

Notes

Acknowledgements

This work was supported by PROFAPI 2015/103, Programa para el Desarrollo Profesional Docente (Grant No. CANE year 3) and Consejo Nacional de Ciencia y Tecnología INFRA 2012-01-188029 and INFRA-230061 Grants. Authors thank Y. Montaño-Ley for his help and D. Fischer for editorial services.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Anandkumar A, Nagarajan R, Prabakaran K, Rajaram R (2017) Trace metal dynamics and risk assessment in the commercially important marine shrimp species collected from the Miri coast, Sarawak, East Malaysia. Reg Stud Mar Sci 16:79–88.  https://doi.org/10.1016/j.rsma.2017.08.007 CrossRefGoogle Scholar
  2. Bergey LL, Weis JS (2007) Molting as a mechanism of depuration of metals in the diddler crab, Uca pugnax. Mar Environ Res 64:556–562.  https://doi.org/10.1016/j.marenvres.2007.04.009 CrossRefGoogle Scholar
  3. Boada M, Moreno MA, Gil H, Marcano J, Maza J (2007) Metales pesados (Cu+ 2, Cd+ 2, Pb+ 2, Zn+ 2) en músculo y cefalotórax de camarones silvestres Litopenaeus schmitti. Farfantepenaeus subtilis, F. notialis y F. brasiliensis) de la región oriental de Venezuela. Rev Científ 17:186–192Google Scholar
  4. CANAIVE (2012) Cuánto mide México. El tamaño sí importa. Cámara Nacional de la Industria del Vestido, México D.F.Google Scholar
  5. CONAPESCA (2014) Anuario estadístico de pesca y acuacultura. Comisión Nacional de Acuacultura y Pesca. Instituto Nacional de Pesca, MazatlánGoogle Scholar
  6. Daesslé LW, Carriquiry JD, Navarro R, Villaescusa-Celaya JA (2000) Geochemistry of surficial sediments from Sebastian Vizcaino Bay, Baja California. J Coastal Res 16:1133–1145Google Scholar
  7. Delgado-Alvarez C, Ruelas-Inzunza JR, Osuna-López JI, Voltolina D, Frías-Espericueta MG (2015) Mercury content in Litopenaeus vannamei from shrimp farms (NW Mexico). Chemosphere 119:1015–1020.  https://doi.org/10.1016/j.chemosphere.2014.08.079 CrossRefGoogle Scholar
  8. Diop M, Amara R (2016) Mercury concentrations in the coastal marine food web along the Senegalese coast. Environ Sci Pollut Res 23:11975–11984.  https://doi.org/10.1007/s11356-016-6386-x CrossRefGoogle Scholar
  9. Dökmeci AH, Yildiz T, Ongen A, Sivri N (2014) Heavy metal concentration in deepwater rose shrimp species (Parapenaeus longirostris, Lucas, 1846) collected from the Marmara Sea Coast in Tekirdağ. Environ Monit Assess 186:2449–2454.  https://doi.org/10.1007/s10661-013-3551-2 CrossRefGoogle Scholar
  10. EPA (2000) Risk-based concentration table. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  11. Firat Ö, Gök G, Çoğun HY, Yüzereroğlu TA, Kargin F (2008) Concentrations of Cr, Cd, Cu, Zn and Fe in crab Charybdis longicollis and shrimp Penaeus semisulcatus from the Iskenderun Bay, Turkey. Environ Monit Assess 147:117–123.  https://doi.org/10.1007/s10661-007-0103-7 CrossRefGoogle Scholar
  12. Francesconi K, Lenanton RCJ (1992) Mercury contamination in a semi-enclosed marine embayment: organic and inorganic mercury content of biota, and factors influencing mercury levels in fish. Mar Environ Res 33:189–212.  https://doi.org/10.1016/0141-1136(92)90148-F CrossRefGoogle Scholar
  13. Frías-Espericueta MG, Izaguirre-Fierro G, Valenzuela-Quiñonez F, Osuna-López JI, Voltolina D, López-López G, Muy-Rangel MD, Rubio-Castro W (2007) Metal content of the Gulf of California blue shrimp Litopenaeus stylirostris (Stimpson). Bull Environ Contam Toxicol 79:214–217.  https://doi.org/10.1007/s00128-007-9165-z CrossRefGoogle Scholar
  14. Frías-Espericueta MG, Abad-Rosales SM, Aguilar-Juárez M, Osuna-López JI, Izaguirre-Fierro G, Voltolina D (2011) Los metales y la camaronicultura en México. Hidrobiológica 21:217–228Google Scholar
  15. Frías-Espericueta MG, Ramos-Magaña BY, Ruelas-Inzunza J, Soto-Jiménez MF, Escobar-Sánchez O, Aguilar-Juárez M, Izaguirre-Fierro G, Osuna-Martínez CC, Voltolina D (2016) Mercury and selenium concentrations in marine shrimps of NW Mexico: health risk assessment. Environ Monit Assess 188:269.  https://doi.org/10.1007/s10661-016-5645-0 CrossRefGoogle Scholar
  16. Hosseini M, Nabavi SMB, Parsa Y, Ardashir RA (2014) Mercury accumulation in selected tissues of shrimp Penaeus merguiensis from Musa estuary, Persian Gulf: variations related to sex, size and season. Environ Monit Assess 188:629.  https://doi.org/10.1007/s10661-014-3793-7 Google Scholar
  17. Keteles KA, Fleeger JW (2001) The contribution of ecdysis to the fate of copper, zinc and cadmium in grass shrimp, Palaemonetes pugio Holthius. Mar Pollut Bull 42:1397–1402.  https://doi.org/10.1016/S0025-326X(01)00172-2 CrossRefGoogle Scholar
  18. Marchetti C (2013) Role of calcium channels in heavy metal toxicity. ISRN Toxicol 2013:1–9.  https://doi.org/10.1155/2013/184360 CrossRefGoogle Scholar
  19. Martelli A, Rousselet E, Dycke C, Bouron A, Moulis JM (2006) Cadmium toxicity in animal cells by interference with essential metals. Biochimie 88:1807–1814.  https://doi.org/10.1016/j.biochi.2006.05.013 CrossRefGoogle Scholar
  20. Monikh FA, Maryamabadi A, Savari A, Ghanemi K (2015) Heavy metals concentration in sediment, shrimp and two fish species from the northwest Persian Gulf. Toxicol Ind Health 31:554–565.  https://doi.org/10.1177/0748233713475498 CrossRefGoogle Scholar
  21. Moody JR, Lindstrom RM (1977) Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem 49:2264–2267.  https://doi.org/10.1021/ac50022a039 CrossRefGoogle Scholar
  22. Newman MC, Unger MA (2002) Fundamentals of ecotoxicology. Lewis Publishers, Boca RatonGoogle Scholar
  23. Páez-Osuna F, Ruiz-Fernández C (1995a) Trace metals in the Mexican shrimp Penaeus vannamei from estuarine and marine environments. Environ Pollut 87:243–247.  https://doi.org/10.1016/0269-7491(94)P2612-D CrossRefGoogle Scholar
  24. Páez-Osuna F, Ruiz-Fernández C (1995b) Comparative bioaccumulation of trace metals in Penaeus stylirostris in estuarine and coastal environments. Estuarine Coast Shelf Sci 40:35–44.  https://doi.org/10.1016/0272-7714(95)90011-X CrossRefGoogle Scholar
  25. Páez-Osuna F, Tron-Mayen L (1995) Distribution of heavy metals in tissues of the shrimp Penaeus californiensis from the Northwest coast of Mexico. Bull Environ Contam Toxicol 55:209–215.  https://doi.org/10.1007/BF00203011 CrossRefGoogle Scholar
  26. Roesijadi G, Robinson E (1994) Metal regulation in aquatic animals: mechanisms of uptake, accumulation and release. In: Malins DC, Ostrander GK (eds) Aquatic toxicology. Lewis Publishers, London, pp 387–420Google Scholar
  27. Segovia-Zavala JA, Delgadillo-Hinojosa F, Muñoz-Barbosa A, Gutiérrez-Galindo EA, Vidal-Talamantes R (2004) Cadmium and silver in Mytilus californianus transplanted to an anthropogenic influenced and coastal upwelling areas in the Mexican Northeastern Pacific. Mar Pollut Bull 48:458–464.  https://doi.org/10.1016/j.marpolbul.2003.08.022 CrossRefGoogle Scholar
  28. Smith KL, Guentzel JL (2010) Mercury concentrations and omega-3 fatty acids in fish and shrimp: preferential consumption for maximum health benefits. Mar Pollut Bull 60:1615–1618.  https://doi.org/10.1016/j.marpolbul.2010.06.045 CrossRefGoogle Scholar
  29. Soto-Jiménez MF, Páez-Osuna F, Scelfo G, Hibdon S, Franks R, Aggarawl J, Flegal AR (2008) Lead pollution in subtropical ecosystems on the SE Gulf of California coast: a study of concentrations and isotopic composition. Mar Environ Res 66:451–458.  https://doi.org/10.1016/j.marenvres.2008.07.009 CrossRefGoogle Scholar
  30. Zar JH (2010) Biostatistical Analysis. Pearson, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • C. C. Osuna-Martínez
    • 1
  • M. G. Frías-Espericueta
    • 1
  • B. Y. Ramos-Magaña
    • 2
  • M. F. Soto-Jiménez
    • 3
  • Y. Brau-Ibarra
    • 1
  • L. A. Félix-Salazar
    • 1
  • J. I. Osuna-López
    • 1
  • M. Aguilar-Juárez
    • 1
  • D. Voltolina
    • 5
  • C. G. Delgado-Alvarez
    • 4
    Email author
  1. 1.Facultad de Ciencias del MarUniversidad Autónoma de SinaloaMazatlánMexico
  2. 2.Programa de Posgrado en Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  3. 3.UA Mazatlán ICMyL, Universidad Nacional Autónoma de MéxicoMazatlánMexico
  4. 4.Universidad Politécnica de SinaloaMazatlánMexico
  5. 5.Laboratorio de Estudios Ambientales, CIBNOR-UASMazatlánMexico

Personalised recommendations