Advertisement

Heavy Metal Bioaccumulation in the Anemone Paraphelliactis pabista Dunn, 1982 (Actiniaria: Hormathiidae) from the Hydrothermal System of Guaymas Basin, Gulf of California

  • M. Escobar-Chicho
  • L. A. SotoEmail author
  • C. Vanegas-Pérez
  • A. Estradas-Romero
Article

Abstract

A single specimen of the anemone Paraphelliactis pabista was recovered from the Southern Trough of Guaymas Basin during the deep-sea expedition Extreme 2008 conducted onboard the R/V Atlantis/DSRV-2 ALVIN. We studied the bioaccumulation capacity of heavy metals in various tissues of the anemone (oral disk–columella–pedal disk), and retention or adhesion of mineral particles in the epidermis, mesoglea, and gastrodermis. The digested tissues were analyzed for As, Ba, Co, Cu, Cr, Fe, Mn, Ni, Pb, Se, Sb, Sr, Ti, V, and Zn by inductively coupled plasma mass spectrometry. This analysis revealed the capacity of P. pabista for accumulating heavy metals. The predominant mineral particles identified in tissue samples was barite followed by Fe, aluminum-silicates, Sr, and with less presence Cr, Ti, and pyrite. Of the three body compartments analyzed of this anemone, the oral and pedal disks show a greater capacity of bioaccumulation of heavy metals than the columella.

Keywords

Guaymas Basin Hydrothermal vents Heavy metals Anemone 

Notes

Acknowledgements

The authors express their gratitude to the Woods Hole Oceanographic Institute for their invitation to participate in the oceanographic cruise AT 15-38 on board of the R/V ATLANTIS. A special word of appreciation to the crew of the ship and the DSRV ALVIN for their invaluable support during the oceanographic cruise.

Funding

Funding was provided by ICMYL-UNAM with Grant No. 6044

References

  1. Childress JJ, Lee RW, Sanders NK, Felbeck H, Oros DR, Toulmond A, Desbruyeres D, Kennicutt MC, Brooks J (1993) Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental partial pressure of carbon dioxide. Nature 362:147–149CrossRefGoogle Scholar
  2. Corliss JB, Dymond J, Gordon LI, Edmond, JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the galapagos rift. Science 203(4385):1073–1083.  https://doi.org/10.1126/science.203.4385.1073 CrossRefGoogle Scholar
  3. Demina LL, Galkin SV, Shumilin EN (2009) Bioaccumulation of some trace elements in the biota of hydrothermal fields of the Guaymas Basin (Gulf of California). Bol Soc Geol Mex 61(1):31–45.  https://doi.org/10.18268/BSGM2009v61n1a4 Google Scholar
  4. Desbruyères D, Chevaldonné P, Alayse AM, Jollivet D, Lallier FH, Jouin-Toulmond C, Zal F, Sarradin PM, Cosson R, Caprais JC, Arndt C, O’Brien J, Guezennec J, Hourdez S, Riso R, Gaill F, Laubier L, Toulmond A (1998) Biology and ecology of the ‘Pompeii worm’ (Alvinella pompejana Desbruyeres and Laubier), a normal dweller of an extreme deep-sea environment: a synthesis of current knowledge and recent developments. Deep-Sea Res Pt II 45:383–422.  https://doi.org/10.1016/S0967-0645(97)00083-0 CrossRefGoogle Scholar
  5. Di Carlo M, Giovannelli D, Fattorini D, Le Bris N, Vetriani C, Regoli F (2017) Trace elements and arsenic speciation in tissues of tube dwelling polychaetes from hydrothermal vent ecosystems (East Pacific Rise): an ecological role as antipredatory strategy? Mar Environ Res 132:1–13CrossRefGoogle Scholar
  6. Eisler R (1981) Trace metal concentrations in marine organisms. Pergamon Press, New York, p 687Google Scholar
  7. Eisler R (2010) Compendium of trace metals and marine biota volume 1: plants and invertebrates. Elsevier Science, Burlington, p 638Google Scholar
  8. Fautin DG (2016) Catalog to families, genera, and species of orders Actiniaria and Corallimorpharia (Cnidaria: Anthozoa). Zootaxa 4145(1):001–449CrossRefGoogle Scholar
  9. Felbeck H (1981) Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213(4505):336–338CrossRefGoogle Scholar
  10. Gray SJ, Elliott M (2009) Ecology of marine sediments. From science to management 2ª edition. Oxford University Press, OxfordGoogle Scholar
  11. Kádár E (2007) Postcapture depuration of essential metals in the deep sea hydrothermal mussel Bathymodiolus azoricus. Bull Environ Contam Toxicol 78:99–106.  https://doi.org/10.1007/s00128-007-9001-5 CrossRefGoogle Scholar
  12. Kádár E, Costa V, Martins I, Santos RS, Powell JJ (2005) Enrichment in trace metals (Al, Mn, Co, Cu, Mo, Cd, Fe, Zn, Pb and Hg) of macro-invertebrate habitats at hydrothermal vents along the Mid-Atlantic Ridge. Hydrobiologia 548:191–205.  https://doi.org/10.1007/s10750-005-4758-1 CrossRefGoogle Scholar
  13. López-González PJ, Rodríguez E, Gili JM (2003) New records on sea anemones (Anthozoa: Actiniaria) from hydrothermal vents and cold seeps. Zoologische Mededelingen 345:215–243Google Scholar
  14. Pazos R, Astorga E, Hernández. M (2007) Digestión ácida asistida por microondas de tejidos orgánicos (Met USEPA SW-3052 modificado). Unidad de Análisis Ambiental. Facultad de Ciencias, UNAM. Procedimiento estandarizado. Clave; Met 006Google Scholar
  15. Powell MA, Somero GN (1986) Adaptations to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism. Biol Bull 171(1):274–290.  https://doi.org/10.2307/1541923 CrossRefGoogle Scholar
  16. Ruelas IJ, Soto LA, Paez OF (2003) Heavy-metal accumulation in the hydrothermal vent clam Vesicomya gigas from Guaymas Basin, Gulf of California. Deep-Sea Res PT I 50:757–761.  https://doi.org/10.1016/S0967-0637(03)00054-2 CrossRefGoogle Scholar
  17. Sanamyan NP, Sanamyan KE (2007) Deep-water actiniaria from East Pacific hydrothermal vents and cold seeps. Invertebr Zool 4(1):83–102CrossRefGoogle Scholar
  18. Shmelev IP, Kuznetsov AA, Galkin SV (2009) Heavy metals in the benthic animals from hydrothermal vents: results of neutron activation analysis. Oceanology 49:429–431.  https://doi.org/10.1134/S0001437009030151 CrossRefGoogle Scholar
  19. Soto LA (2003) Research of Extreme Environments in the Deep- Sea. In: “Agustín Ayala Castañares: universitario, impulsor de la investigación científica (Ed. Luis A. Soto). Inst. de Cien. del Mar y Limnol. Univ. Nal. Autón, Mex., 311–318Google Scholar
  20. Soto LA (2009) Stable carbon and nitrogen isotopic signatures of fauna associated to the deep-sea hydrothermal vent system of Guaymas Basin, Gulf of California. Deep-Sea Res PT II 56(19–20):1675–1682.  https://doi.org/10.1016/j.dsr2.2009.05.013 CrossRefGoogle Scholar
  21. Tarasov VG, Gebruk AV, Mironov AN, Moskalev LI (2005) Deep-sea and shallow water hydrothermal vent communities: two different phenomena? Chem Geol 224:5–39.  https://doi.org/10.1016/j.chemgeo.2005.07.02 CrossRefGoogle Scholar
  22. TunnicliffeV (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr Mar Biol Annu Rev 29:319–407Google Scholar
  23. Von Damm KL (2000) Chemistry of hydrothermal vent fluids from 9 to 10° N, East Pacific Rise: “Time zero”, the immediate posteruptive period. J Geophys Res 105:11203–11222CrossRefGoogle Scholar
  24. Von Damm KL, Edmond JM, Measures CI, Grant B (1985) Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 49(11):2221–2237.  https://doi.org/10.1016/0016-7037(85)90223-6 CrossRefGoogle Scholar
  25. Walker CH, Sibly RM, Hopkin SP, Peakall DB (2006) Principles of ecotoxicology. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Ciencias del Mar y Limnología, Posgrado en Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Instituto de Ciencias del Mar y Limnología, Ciudad UniversitariaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Facultad de Ciencias, Ciudad UniversitariaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations