Presence and Spatial Distribution of Polynuclear Aromatic Hydrocarbons (PAHs) in Groundwater of Merida City, Yucatan, Mexico

  • Rafael López-Macias
  • Víctor Cobos-Gasca
  • Diana Cabañas-Vargas
  • Jaime Rendón von OstenEmail author


The karstic aquifer of Yucatan features a high permeability, therefore, all contaminants placed in the soil surface, can reach it through infiltration along with the rain water. The purpose of the present study is to determine the spatial distribution of the aromatic hydrocarbons in the underground water of Merida City. Fifty wells inside the city were sampled. The sampling took place during the dry season, from October 2007 to March 2008. Liquid–liquid Hydrocarbon extraction was performed using hexane and purification was made by previously packed chromatography columns. Regarding the occurrence of polynuclear aromatic hydrocarbon (PAHs) traces, 28 water samples (56%) contained residues of these compounds. The following PAHs presented the highest concentrations: benzo(a)anthracene y benzo(k)fluoranthene 13.26 and 7.88 µg L−1 respectively. Only three of the sampled wells showed levels above those allowed by EPA and WHO norms. The origin of these compounds is mainly pyrogenic.


Polynuclear aromatic hydrocarbons Underground water Karstic aquifer Benzo(a)pyrenes Benzo(a)anthracenes 



The authors would like to thank CONACYT-FOMIX Yucatán for funding the present work, through the Project “Diagnóstico de Residuos Peligrosos en Yucatán” registry code YUC-2005-04-21281.


  1. Agency for Toxic Substances and Disease Registry (ATSDR) (1995) Toxicological profile for Aromatic Polynuclear Hydrocarbons. Public health abstract. Division of Toxicology. Department of Health and Human Services of the United States of America. 7 ppGoogle Scholar
  2. Botello AV (2005) Características, composición y propiedades fisicoquímicas del petróleo. En: Golfo de México, Contaminación e Impacto Ambiental: Diagnóstico y Tendencias (AV). Botello JL, Rojas-Galaviz JA, Benítez, y D, Zárate-Lomelí (eds), 2nd edn. Univ. Autón. De Campeche. Univ. Nal. Autón. De México, Instituto Nacional de Ecología, Mexico, pp. 261–268Google Scholar
  3. Cheng D, Rogan J, Schneider L, Cochrane M (2013) Evaluating MODIS active fire products in subtropical Yucatán forest. Remote Sens Lett 4(5):455–464CrossRefGoogle Scholar
  4. Chi-Tec ML (2006) Contaminación del agua subterránea por metales traza en el estado de Yucatán, México. Tesis de Maestría. Facultad de Ingeniería Civil. Universidad Autónoma de Yucatán, MéxicoGoogle Scholar
  5. CONAGUA (2016) Comisión Nacional del Agua. Ley Federal de Derechos. Disposiciones Aplicables en Materia de Aguas. Nacionales 2016. Available at: L-1ey_Federal_de_Derechos.pdf
  6. Doerfliger N, Jeannin P, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method), Environ. Geol. 39 (2):165–176CrossRefGoogle Scholar
  7. Escolero OA, Marin LE, Steinich B, Pacheco J (2000) Delimitation of a hydrogeological reserve for a city within a karstic aquifer: the Merida, Yucatan example. Landsc Urban Plan 51:53–62CrossRefGoogle Scholar
  8. European Community (1980) EC directive relating to the quality of water intended for human consumption, 80/778/EEC. Office for Official publications of the European Communities, LuxembourgGoogle Scholar
  9. González-Herrera R, Sánchez-y-Pinto I, Gamboa-Vargas J (2002) Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico. Hydrogeol J 10:539–552CrossRefGoogle Scholar
  10. Guerin WJ, Jones GE (1989) Estuarine ecology of phenantrene-degrading bacteria. Est Coas Shelf Sci 29(2):115–130CrossRefGoogle Scholar
  11. Ham-Chi JM (1994) Las aguas subterráneas en México. Memorias Seminario Internacional del agua. Contaminación de cuerpos de aguas superficiales y subterráneas por fuentes no puntuales. Comisión Nacional del Agua. Mazatlán, MéxicoGoogle Scholar
  12. Karyab H, Yunesian M, Nasseri S, Mahvi AH, Ahmadkhaniha R, Rastkari N, Nabizadeh R (2013) Polynuclear aromatic hydrocarbons in drinking water of Tehran, Iran. J Environ Health Sci Eng 11:25CrossRefGoogle Scholar
  13. Lambrakis J, Antonakos A, Panagopalus G (2004) The use of multicomponente statistical analysis in hidrogeological environmental research. Water Res 38:1862–1872CrossRefGoogle Scholar
  14. Ma Y, Cheng J, Jiao F, Duo K, Rong Z, Li M, Wang W (2008) Distribution, sources, and potential risk of polynuclear aromatic hydrocarbons (PAHs) in drinking water resources from Henan Province in middle of China. Environ Monit Assess 146:127–138CrossRefGoogle Scholar
  15. Marín LE (1990) Field investigation and numerical simulation of groundwater flow in the karstic aquifer of Nortwestern Yucatan, Mexico. PhD Thesis Northern University of Illinois, USAGoogle Scholar
  16. Martínez de Villa PA, Prieto DVI (1999) La contaminación de las aguas por hidrocarburos: un enfoque para abordar su estudio. Rev. Cuba Hig Epidemiol y Microbiol 3781:13–20Google Scholar
  17. Nahuat MC (2006) Evaluación de la contaminación por hidrocarburos en los sedimentos de las lagunas de Bocas de Dzilam y Celestún, Yucatán. Tesis de Maestría. Facultad de Ingeniería Civil. Universidad Autónoma de Yucatán, MéxicoGoogle Scholar
  18. Neff JN, Stout SA, Gunster DG (2005) Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integr Environ Assess Manag 1(1):22–33CrossRefGoogle Scholar
  19. Nigh R, Diemont S (2013) The Maya milpa: fire and the legacy of living soil. Front Ecol Environ 11(s1):e45–e54CrossRefGoogle Scholar
  20. Pacheco AJ, Calderón RL, Cabrera SA (2004) Delineación de la zona de protección hidrogeológica para el campo de pozos de la planta Mérida I, en la ciudad de Mérida, Yucatán, México. Ingeniería 8(1):7–16Google Scholar
  21. Pires do Rego EC, Pereira Netto AD (2007) PAHs and BETEX in groundwater of gasoline station from Rio de Janeiro city, Brazil. Bull Environ Contam Toxicol 79:660–664CrossRefGoogle Scholar
  22. Steinich B, Marín LE (1996) Hydrogeological investigation in Northwest Yucatan Mexico using resistivity surveys. Groundwater 34(4):640–646CrossRefGoogle Scholar
  23. United States Environmental Protection Agency (USEPA) (1986) Method 8310, polynuclear aromatic hydrocarbonsGoogle Scholar
  24. United States Environmental Protection Agency (USEPA) (2003) National primary drinking water standards.
  25. USEPA (1984) EPA 40 CFR, Part 136, Method 610 polynuclear aromatic hydrocarbons, Fed. Regist. 49, Washington, DCGoogle Scholar
  26. Valenzuela Sánchez IS, Gold-Bouchot G, Ceja Moreno V (2005) Hidrocarburos en agua y sedimentos en la laguna de Chelem y puerto Progreso, Yucatán, México. En: Golfo de México, Contaminación e Impacto ambiental: Diagnóstico y Tendencias (Botello AV, Rojas-Galaviz JL, Benítez JA, Zárate-Lomelí D, eds.). EPOMEX Serie Científica 5. Universidad Autónoma de Campeche, México. pp 311–328Google Scholar
  27. Vallarino A, Rendon von Osten J (2017) Comparison of organochlorine and PAHs residues in terns eggs from two natural protected areas in the Gulf of Mexico. Mar Poll Bull 116:48–55CrossRefGoogle Scholar
  28. Vega S, Gutierrez R, Ortiz R, Schettino B, Ramirez ML, Pérez JJ (2011) Hydrocarbons derived from petroleum in bottled drinking water fro, Mexico city. Bull Environ Contam Toxicol 86:632–636CrossRefGoogle Scholar
  29. Villasuso Pino MJ, Méndez-Ramos R (2000) Modelo conceptual del acuífero de la Península de Yucatán. Proyecto Población-Desarrollo-Medio ambiente. IIASA, CINVESTAV IPN, Reporte Interno. Yucatán, MéxicoGoogle Scholar
  30. Wade TL, Atlas EL, Brooks JM, Kennicutt IIMC, Fox RJ, Sericano J, García-Romero B, DeFreitas D (1998) NOAA Gulf of Mexico status and trends program: trace organic contaminant distribution in sediments and oysters. Estuaries 11:171–179CrossRefGoogle Scholar
  31. Wang Z, Li K, Fingas M, Sigouin L, Menard L (2002) Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques. J Chromatogr 971:173–184CrossRefGoogle Scholar
  32. Wang XT, Miao Y, Zhang Y, Li YC, Wu MH, Yu G (2013) Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk. Sci Total Environ 447:80–89CrossRefGoogle Scholar
  33. World Health Organizations (WHO) (1997) Non-heterocyclic polycyclic aromatic hydrocarbons. World Health Organization, International Programme on Chemical Safety, Environmental Health Criteria, Geneva, pp 202Google Scholar
  34. WHO (2006) Guidelines for drinking-water quality, volume 1 Recommendations. World Health Organization, Geneva, pp 515Google Scholar
  35. Zar JH (1984) Biostatistical Analysis. Prentice-Hall, Upper Saddle River, pp 719Google Scholar
  36. Zoccolillo L, Babi D, Felli M (2000) Evaluation of polynuclear aromatic hydrocarbons in gasoline by HPLC and GCMS. Chromatogr 52:373–376CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Campus de Ciencias Biológicas y Agropecuarias-UADYMéridaMexico
  2. 2.Campus de Ciencias Exactas e IngenieriasMéridaMexico
  3. 3.Instituto de Ecología Pesquería y Oceanografía del Golfo de México, Universidad Autónoma de CampecheCampecheMexico

Personalised recommendations