Occurence and Prioritization of Pharmaceutical Active Compounds in Domestic/Municipal Wastewater Treatment Plants

  • Ilda VergiliEmail author
  • Yasemin Kaya
  • Z. Beril Gönder
  • Andrea Boergers
  • Jochen Tuerk


In this study, pharmaceutically active compounds (PhACs) were analyzed in the influent and effluent of a domestic wastewater treatment plant in Turkey and a municipal wastewater treatment plant in Germany and the toxicity of these wastewaters were estimated using a toxic unit (TU) approach. A total of 21 and 32 PhACs were detected in the domestic wastewater and the municipal wastewater, respectively. The TUs estimated for PhACs in municipal wastewater were higher than the TUs estimated for PhACs present in domestic wastewater. The levels of the anti-anxiety drug, oxazepam were estimated to be in the high risk category (HQ > 10) in both wastewaters. In bench-scale tests with ozonation, the removals of four PhACs in the municipal wastewater were investigated. At a dose of 2 mg/L ozone, 97%–98% of diclofenac and carbamazepine were removed. The lowest removal rate at 71% was observed for metoprolol.


PhAC Domestic/municipal wastewater Toxicological effects HQ 



This work was supported by Scientific Research Project Coordination Unit of Istanbul University. Project Number: 31495, 31527, and 41771.


  1. APHA/ AWWA/WEF (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DCGoogle Scholar
  2. Barraud O, Casellas M, Dagot C, Ploy M-C (2013) An antibiotic-resistant class 3 integron in an Enterobacter cloacae isolate from hospital effluent. Clin Microbial Infec 19:E306–E308CrossRefGoogle Scholar
  3. Cooper ER, Siewicki TC, Phillips K (2008) Preliminary risk assessment database and risk ranking of pharmaceuticals in the environment. Sci Total Environ 398(1–3):26–33CrossRefGoogle Scholar
  4. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Persp Suppl 107:907–938CrossRefGoogle Scholar
  5. DeLorenzo ME, Fleming J (2008) Individual and mixture effects of selective pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta. Arch Environ Con Tox 54:203–210CrossRefGoogle Scholar
  6. EC (2003) Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II: Environmental Risk Assessment). Off. Off. Publ. of EC, LuxembourgGoogle Scholar
  7. Edwards QA, Sultana T, Kulikov SM et al (2018) Contaminants of emerging concern in wastewaters in Barbados, West Indies. Bull Environ Contam Toxicol 101(1):1–6CrossRefGoogle Scholar
  8. EU (2015) Decision 495/2015/EU of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off J Eur Union 78:40–42Google Scholar
  9. Fram MS, Belitz K (2011) Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Sci Total Environ 409:3409–3417CrossRefGoogle Scholar
  10. Gaw S, Thomas KV, Hutchinson TH (2014) Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Phil Trans R Soc B 369:20130572CrossRefGoogle Scholar
  11. Göbel A, McArdell CS, Joss A et al (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372(2–3):361–371CrossRefGoogle Scholar
  12. Gros M, Petrović M, Ginebreda A, Barceló D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36:15–26CrossRefGoogle Scholar
  13. Harris S, Morris C, Morris D et al (2014) Antimicrobial resistant Escherichia coli in the municipal wastewater system: effect of hospital effluent and environmental fate. Sci Total Environ 468–469:1078–1085CrossRefGoogle Scholar
  14. Heberer T (2002) Occurrence, fate and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17CrossRefGoogle Scholar
  15. Kårelid V, Larsson G, Björlenius B (2017) Pilot-scale removal of pharmaceuticals in municipal wastewater: comparison of granular and powdered activated carbon treatment at three wastewater treatment plants. J Environ Manag 193:491–502CrossRefGoogle Scholar
  16. Majewsky M, Farlin J, Bayerle M, Galle T (2013) A case-study on the accuracy of mass balances for xenobiotics in full-scale wastewater treatment plants. Environ Sci: Process Impacts 15:730–738Google Scholar
  17. Mendoza A, Acena J, Perez S et al (2015) Pharmaceuticals and iodinated contrast media in a hospital wastewater: a case study to analyse their presence and characterise their environmental risk and hazard. Environ Res 140:225–241CrossRefGoogle Scholar
  18. Miao XS, Yang JJ, Metcalfe CD (2005) Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environ Sci Technol 39:7469–7475CrossRefGoogle Scholar
  19. Orias F, Perrodin Y (2013) Characterisation of the ecotoxicity of hospital effluents: a review. Sci Total Environ 454–455:250–276CrossRefGoogle Scholar
  20. Ort C, Lawrence MG, Rieckermann J, Joss A (2010) Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review. Environ Sci Technol 44:6024–6035CrossRefGoogle Scholar
  21. Paíga P, Delerue-Matos C (2016) Determination of pharmaceuticals in groundwater collected in five cemeteries’ areas (Portugal). Sci Total Environ 569–570:16–22CrossRefGoogle Scholar
  22. Pino-Otín MR, Muñiz S, Val J, Navarro E (2017) Effects of 18 pharmaceuticals on the physiological diversity of edaphic microorganisms. Sci Total Environ 595:441–450CrossRefGoogle Scholar
  23. Rivera-Jaimes JA, Postigo C, Melgoza-Alemán RM et al (2018) Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: occurrence and environmental risk assessment. Sci Total Environ 613–614:1263–1274CrossRefGoogle Scholar
  24. Seidel U, Ante S, Boergers A et al (2013) Abschlussbericht zum Forschungsvorhaben Analyse der Eliminationsmöglichkeiten von Arzneimitteln in den Krankenhäusern in NRW (TP 3) gerichtet an das Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen (MKULNV), AZ IV-7-042 600 001C, Vergabenummer 08/0581Google Scholar
  25. Ternes TA (1998) Occurrence of drugs in german sewage treatment plants and rivers. Water Res 32:3245–3260CrossRefGoogle Scholar
  26. Tuerk J, Dazio M, Dinkel F et al (2013) Abschlussbericht zum Forschungsvorhaben Volkswirtschaftlicher Nutzen der Ertüchtigung kommunaler Kläranlagen zur Elimination von organischen Spurenstoffen, Arzneimitteln, Industriechemikalien, bakteriologisch relevanten Keimen und Viren (TP 9) gerichtet an das Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur und Verbraucherschutz des Landes Nordrhein-Westfalen (MKULNV), AZ IV-7-042 600 001I, Vergabenummer 08/0581Google Scholar
  27. Urtiaga AM, Pérez G, Ibáñez R, Ortiz I (2013) Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination 331:26–34CrossRefGoogle Scholar
  28. Vergili I, Gencdal S (2017) Removal of organic matter and etodolac from pharmaceutical industry wastewater by PAC adsorption. Water Environ Res 89:641–651CrossRefGoogle Scholar
  29. Yang Y, Ok YS, Kim K-H et al (2017) Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ 596–597:303–320CrossRefGoogle Scholar
  30. Yilmaz G, Kaya Y, Vergili I et al (2017) Characterization and toxicity of hospital wastewaters in Turkey. Environ Monit Assess 189:55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Engineering, Department of Environmental EngineeringIstanbul University -CerrahpasaIstanbulTurkey
  2. 2.Institut für Energie-und Umwelttechnik e.V. (IUTA, Institute of Energy and Environmental Technology)DuisburgGermany

Personalised recommendations