Advertisement

Evaluation of Growth, Photosynthetic Pigments and Genotoxicity in the Wetland Macrophyte Bidens laevis Exposed to Tebuconazole

  • Lucia D. Moreyra
  • Daniela S. Garanzini
  • Sandra Medici
  • Mirta L. MenoneEmail author
Article

Abstract

The fungicide tebuconazole (TBZ) has been used to prevent terrestrial fungi in agroecosystems, but it can also induce negative effects to non-targeted aquatic organisms, such as plants. The aim of the present work was to evaluate the potential cyto- and genotoxicity of TBZ in the aquatic macrophyte Bidens laevis, exposed to a range of concentrations of 0.1–100 µg/L. Mitosis in root tips were analyzed showing decreased mitotic index and an increase of chromosomal aberrations at 10 and 100 µg/L. The regression of TBZ concentration vs. aneugenic aberrations was significant, indicating the mechanism of genotoxicity. The specific growth rate (Gr) for total length decreased in plants exposed to 0.1, 10 and 100 µg/L. Gr for root decreased in plants exposed at 0.1 and 10 µg/L, reaching a maximum percent inhibition root growth rate (Ir) of 68.8%. These results show that TBZ resulted cyto- and genotoxic to B. laevis at environmentally relevant levels.

Keywords

Fungicides Plant growth Cytotoxicity Chromosomal aberrations 

Notes

Acknowledgements

Thank you to G. Lukaszewicz for his help on identifying chromosomal aberrations in the samples and to G. Iturburu for his help in the statistical treatment of the data. This work was supported by FONCYT- AGENCIA (PICT-2013- 1348) and UNMDP (EXA 795/16 and EXA 900/18).

References

  1. Battalin WA, Sandstrom MW, Kuivila KM, Kolpin DW, Meyer MT (2011) Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005–2006. Water Air Soil Pollut 218:307–322CrossRefGoogle Scholar
  2. Bernardes PM, Andrade-Vieira LF, Aragão FB, Ferreira A, da Silva Ferreira MF (2015) Toxicity of Difenoconazole and Tebuconazole in Allium cepa. Water Air Soil Poll 226:207CrossRefGoogle Scholar
  3. Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB (2017) Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. Aquat Toxicol 193:144–151CrossRefGoogle Scholar
  4. De Gerónimo E, Aparicio VC, Bárbaro S, Portocarrero R, Jaime S, Costa JL (2014) Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere 107:423–431CrossRefGoogle Scholar
  5. Fisun K, Goc Rasgele P (2009) Genotoxic effects of Raxil on root tips and anthers of Allium cepa L. Caryologia 62:1–9CrossRefGoogle Scholar
  6. Huggett RJ, Kimerle RA, Mehrle PM Jr, Bergman HL (1992) Biomarkers and biochemical and physiological markers of anthropogenic stress. Lewis Publishers, Chelsea, 347 ppGoogle Scholar
  7. Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485CrossRefGoogle Scholar
  8. Lv T, Zhang Y, Casas ME, Carvalho PN, Arias CA, Bester K, Brix H (2016) Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium. Chemosphere 148:459–466CrossRefGoogle Scholar
  9. Maltby L, Arnold D, Arts G, Davies J, Heimbach F, Pickl C, Poulsen V (2010) Aquatic macrophyte risk assessment for pesticides. CRC Press, Boca Raton, pp 135Google Scholar
  10. Menone ML, Pérez DJ, Lukaszewicz G, Camadro EL (2015) Identificación de hidrófitas de la Argentina para estudios de genotoxicidad de contaminantes acuáticos. J Basic Appl Genet 26:9–17Google Scholar
  11. Pérez DJ, Lukaszewicz G, Menone ML, Camadro EL (2011) Sensitivity of Bidens laevis L. to mutagenic compounds. Use of chromosomal aberrations as biomarkers of genotoxicity. Environ Poll 159:281–286CrossRefGoogle Scholar
  12. Pérez DJ, Menone ML, Doucette WJ (2013) Root-to-shoot transfer and distribution of endosulfan in the wetland macrophyte Bidens laevis L. Environ Toxicol Chem 32:2478–2481Google Scholar
  13. Pérez DJ, Lukaszewicz G, Menone ML, Amé MV, Camadro EL (2014) Genetic and biochemical biomarkers in the macrophyte Bidens laevis L. exposed to a commercial formulation of endosulfan. Environ Toxicol 29:1063–1071CrossRefGoogle Scholar
  14. Pérez DJ, Menone ML, Tognetti J, Lukaszewicz G (2018) Azoxystrobin induces chromosomal aberrations in roots of the hydrophyte Bidens laevis L. Revista Internacional de Contaminación Ambiental (RICA). ISSN 0188–4999 In pressGoogle Scholar
  15. Rabiet M, Margoum C, Gouy V, Carluer N, Coquery M (2010) Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment- effect of sampling frequency. Environ Poll 158:737–748CrossRefGoogle Scholar
  16. Serra A-A, Couée I, Renault D, Gouesbet G, Sulmon C (2015) Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress. J Exp Bot 66:1801–1816CrossRefGoogle Scholar
  17. Tomlin CDS (2003) The e-Pesticide Manual: a world compendium. Tebuconazole 13th edn. PC CD-ROM, Version 3.0, 2003-04. British Crop Protection Council: SurreyGoogle Scholar
  18. Yang D, Wang N, Yan X, Shi J, Zhang M, Wang Z, Yuan H (2014) Microencapsulation of seed-coating tebuconazole and its effects on physiology and biochemistry of maize seedlings. Colloids Surf B 60:241–246CrossRefGoogle Scholar
  19. Zubrod JP, Bundschuh M, Feckler A, Englert D, Schulz R (2011) Ecotoxicological impact of the fungicide tebuconazole on an aquatic decomposer-detritivore system. Environ Toxicol Chem 30:2718–2724CrossRefGoogle Scholar
  20. Zubrod JP, Englert D, Feckler A, Koksharova N, Konschak M, Bundschuh R, Schnetzer N, Englert K, Schulz R, Bundschuh M (2015) Does the current fungicide risk assessment provide sufficient protection for key drivers in aquatic ecosystem functioning? Environ Sci Technol 49:1173–1181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataFunes, Mar del Plata, Buenos AiresArgentina
  2. 2.Laboratorio de EcotoxicologíaInstituto de Investigaciones Marinas y Costeras (IIMYC)-UNMDP, CONICET, Fac. Cs. Ex. y NatFunes, Mar del Plata, Buenos AiresArgentina
  3. 3.Fares Taie Biotecnología-CONICETMagallanes, Mar del PlataArgentina

Personalised recommendations