Advertisement

Genotoxic Damages and Bioaccumulation of Cadmium in Geophagus Brasiliensis (Quoy & Gaimard, 1824)

  • Emanuelle Carneiro Queiroz
  • Bruno Ferreira da Silva
  • Rômulo Victor Salla
  • Jean Pierre Louzada Ramos
  • Karla Giavarini Gnocchi
  • Adriana Regina Chippari-GomesEmail author
Article

Abstract

The toxic effects of cadmium (Cd) in Geophagus brasiliensis was investigated in the present study. For this, 32 specimens of G. brasiliensis were exposed in individual aquaria to Cd concentrations (0.00, 0.01, 0.07, and 0.67 mg/L) for 14 days. The micronuclei test did not detect the genotoxic damage at the studied concentrations and time of exposure. However, the comet assay proved to be more efficient, as DNA damage was found in the animals exposed to the higher Cd concentrations. Finally, exposure of G. brasiliensis to Cd was associated with Cd accumulation in the gills, while only the animals exposed to 0.67 mg/L of Cd exhibited muscle accumulation. These results demonstrate that Cd concentrations over 0.07 mg/L caused genotoxic damage, as well as Cd accumulation in G. brasiliensis individuals after a 14 days exposure.

Keywords

Cadmium G. brasiliensis Accumulation Genotoxic damage 

Notes

Acknowledgements

The authors gratefully acknowledge the Espírito Santo State Scientific Research Foundation (FAPES) for providing a post-graduate stipend for the student Emanuelle C. Queiroz (#66695368/14). This work was also supported by a research grant from an internal project of University Vila Velha (#06/2009) and by a research grant from FAPES (Proc. #61902861).

References

  1. Afanasieva K, Sivolob A (2018) Physical principles and new applications of comet assay. Biophys Chem 238:1–7.  https://doi.org/10.1016/j.bpc.2018.04.003 CrossRefGoogle Scholar
  2. Al-Asgah NA, Abdel-Wahab Abdel-Warith A, El-Sayed MY, Hassan YA (2015) Haematological and biochemical parameters and tissue accumulations of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi J Biol Sci 22:543–550CrossRefGoogle Scholar
  3. Andrade VM, Freitas TRO, Silva J (2004) Comet assay using mullet (Mugil sp) and sea catfish (Netuma sp) erythrocytes for the detection of genotoxic pollutants in aquatic environment. Mutat Res 560:57–67CrossRefGoogle Scholar
  4. Andres S, Ribeyre F, Tourencq JN, Boudou A (2000) Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Sci Total Environ 248:11–25CrossRefGoogle Scholar
  5. Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi SP (2018) An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquat Toxicol 200:158–167CrossRefGoogle Scholar
  6. Bhagure GR, Mirgane SR (2011) Heavy metal concentrations in ground waters and soils of Thane Region of Maharashtra, India. Environ Monit Assess 173:643–652.  https://doi.org/10.1007/s10661-010-1412-9 CrossRefGoogle Scholar
  7. Boock MV, Machado Neto JG (2005) Estudos sobre a toxicidade aguda do oxicloreto de cobre para o peixe Poecilia reticulata. B Inst Pesca 31(1):29–35Google Scholar
  8. Burger J (2008) Assessment and management of risk to wildlife from cadmium. Sci Total Environ 389:37–45CrossRefGoogle Scholar
  9. Çavas T, Garanko NN, Arkhipchuk VV (2005) Induction of micronuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and cooper sulphate. Food Chem Toxicol 43:569–574CrossRefGoogle Scholar
  10. Coppo GC, Passos LS, Lopes TOM, Pereira TM, Merçon J, Cabral DS, Barbosa BV, Caetano LS, Kapmkel EH (2018) Genotoxic, biochemical and bioconcentration effects of manganese on Oreochromis niloticus (Cichlidae). Ecotoxicology 1–11Google Scholar
  11. Faverney CR, Devaux A, Lafaurie M, Girard JP (2001) Cadmium induces apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive oxygene species. Aquat Toxicol 53:65–76CrossRefGoogle Scholar
  12. Gao M, Yang Y, Lv M, Song W, Song Z (2018) Oxidative stress and DNA damage in zebrafish liver due to hydroxyapatite nanoparticles-loaded cadmium. Chemosphere 202:498–505CrossRefGoogle Scholar
  13. Grisolia CK, Oliveira ABB, Bonfim H, Klautau-Guimarães MN (2005) Genotoxicity evaluation of domestic sewage in a municipal waste water treatment plant. Genet Mol Biol 28(2):334–338CrossRefGoogle Scholar
  14. Isani G, Andreani G, Cocchioni F, Fedeli D, Carpené E, Falcioni G (2009) Cadmium accumulation and biochemical responses in Sparus aurata following sub-lethal Cd exposure. Ecotoxicol Environ Saf 72:224–230CrossRefGoogle Scholar
  15. Jia X, Zhang H, Liu X (2011) Low levels of cadmium exposure induce DNA damage and oxidative stress in the liver of Oujiang colored common carp Cyprinus carpio var color. Fish Physiol Biochem 97–103.  https://doi.org/10.1007/s10695-010-9416-5
  16. Jindal R, Verma S (2015) In vivo genotoxicity and cytotoxicity assessment of cadmium chloride in peripheral erythrocytes of Labeo rohita (Hamilton). Ecotoxicol Environ Saf 118:1–10CrossRefGoogle Scholar
  17. Kobayashi H, Sugiyama C, Morikawa Y, Hayashi M, Sofuni T (1995) A comparison between manual microscopic analysis and computerized image analysis in the single cell gel electrophoresis. MMS Commun 3:103–115Google Scholar
  18. Kraal MH, Kraak MH, Groot CJ, Davids C (1995) Uptake and tissue distribution of dietary and aqueous cadmium by carp (Cyprinus carpio). Ecotoxicol Environ 31:179–183CrossRefGoogle Scholar
  19. Omar W, Zaghloul KH, Abdel-Khalek A, Abo-Hegab S (2012) Genotoxic effects of metal pollution in two fish species, Oreochromis niloticus and Mugil cephalus, from highly degraded aquatic habitats. Mutat Res - Genet Toxicol Environ Mutagenesis 746:7–14.  https://doi.org/10.1016/j.mrgentox.2012.01.013 CrossRefGoogle Scholar
  20. Perazzo GX, Noleto RB, Vicari MR, Gava A, Cestari MM (2013) Trends of karyotypical evolution in the pearl cichlid, Geophagus brasiliensis, from southern Brazil. Zoology 116:286–292.  https://doi.org/10.1016/j.zool.2013.07.002 CrossRefGoogle Scholar
  21. Pereira LS, Ribas JLC, Vicari T, Silva SB, Stival J, Baldan AP, Valdez Domingos FX, Grassi MT, Cestari MM, Silva de Assis HC (2016) Effects of ecologically relevant concentrations of cadmium in a freshwater fish. Ecotoxicol Environ Saf 130:29–36CrossRefGoogle Scholar
  22. Pinto AP, Mota AM, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by Sorghum plants. Sci Environ J 326:239–247Google Scholar
  23. Qu R, Wang X, Wang Z, Wei Z, Wang L (2014) Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. J Hazard Mater 275:89–98CrossRefGoogle Scholar
  24. Rocha TL, Gomes T, Cardoso C, Letendre J, Pinheiro JP, Sousa VS, Teixeira MR, Bebianno MJ (2014) Immunocytotoxicity, cytogenotoxicity and genotoxicity of cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis. Mar Environ Res 101:29–37CrossRefGoogle Scholar
  25. Saibua Y, Kumarb S, Jamwald A, Peake D, Niyogia S (2018) A FTIRM study of the interactive effects of metals (zinc, copper and cadmium) in binary mixtures on the biochemical constituents of the gills in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Part C 211:48–56Google Scholar
  26. Sarkar A, Bhagat J, Ingole BS, Rao DP, Markad VL (2015) Genotoxicity of cadmium chloride in the marine gastropod Nerita chamaeleon using comet assay and alkaline unwinding assay. Environ Toxicol 30(2):177–187CrossRefGoogle Scholar
  27. Signa G, Mazzola A, Tramati CD, Salvatrice V (2017) Diet and habitat use in fl uence Hg and Cd transfer to fi sh and consequent biomagnification in a highly contaminated area: Augusta Bay (Mediterranean Sea). Environ Pollut 230:394–404.  https://doi.org/10.1016/j.envpol.2017.06.027 CrossRefGoogle Scholar
  28. Souid G, Souayed N, Yaktiti F, Maaroufi K (2013) Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of Sparus aurata. Ecotoxicol Environ Saf 89:1–7CrossRefGoogle Scholar
  29. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet Assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagenesis 35:206–222CrossRefGoogle Scholar
  30. Winkaler EU, Thiago RM, Santos TRU, Joaquim G, Machado-Neto JG, Martinez CBR (2007) Acute lethal and sublethal effects of neem leaf extract on the neotropical freshwater fish Prochilodus lineatus. Comp Biochem Physiol Part C 145:236–244Google Scholar
  31. Wu SM, Shih MJ, Ho YC (2007) Toxicological stress response and cadmium distribution in hybrid tilápia (Oreochromis sp.) upon cadmium exposure. Comp Biochem Physiol 145:218–226Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Emanuelle Carneiro Queiroz
    • 1
  • Bruno Ferreira da Silva
    • 2
  • Rômulo Victor Salla
    • 1
  • Jean Pierre Louzada Ramos
    • 1
  • Karla Giavarini Gnocchi
    • 1
  • Adriana Regina Chippari-Gomes
    • 1
    Email author return OK on get
  1. 1.Laboratório de Ictiologia Aplicada (LAB PEIXE)Universidade Vila Velha -UVVVila VelhaBrazil
  2. 2.InstitutoAplysiaVitoriaBrazil

Personalised recommendations