Zero-valent iron (ZVI) Activation of Persulfate (PS) for Degradation of Para-Chloronitrobenzene in Soil

  • Jia Kang
  • Wencheng Wu
  • Wuxing Liu
  • Jianhua Li
  • Changxun DongEmail author


Para-chloronitrobenzene (p-CNB) in soil has posed significant health risks because of its persistence and high toxicity. The efficacy of catalyzed Zero-Valent Iron (ZVI), activated persulfate, and ZVI-persulfate processes for the degradation of p-CNB in soil was investigated. The p-CNB removal rate significantly increased from 10.8 to 90.1% with increased ZVI dosage from 0.1 mmol g−1 to 1.0 mmol g−1. The p-CNB removal increased with the decrease of initial pH and a removal efficiency of 85.3% was obtained at an initial pH value of 6.8 in combined system. The p-CNB removal rate in the single persulfate system and ZVI system was 36.5% and 60.2%, while the ZVI-persulfate system showed more sufficient p-CNB removal capacity and the removal rate of p-CNB was 88.7%. Scanning electron microscopy (SEM) and Electron paramagnetic resonance (EPR) was adopted in order to explore the degradation mechanism by ZVI-Persulfate system in soil.


Para-chloronitrobenzene Zero-Valent Iron Persulfate Mechanism Oxidation 



This work was supported by the Science and Technology Support Plan Program of Jiangsu Province (No. BY2016077-03) and the Science and Technology Program of Jiangsu (No. BE2018679).


  1. Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38(13):3705CrossRefGoogle Scholar
  2. Bergendahl JA, Thies TP (2004) Fenton’s oxidation of MTBE with zero-valent iron. Water Res 38(2):327CrossRefGoogle Scholar
  3. Fang GD, Dionysiou DD, Wang Y, Al-Abed SR, Zhou DM (2012a) Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics. J Hazard Mater 227–228(43):394CrossRefGoogle Scholar
  4. Fang GD, Dionysiou DD, Wang Y, Al-Abed SR, Zhou DM (2012b) Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics. J Hazard Mater 227–228:394–401CrossRefGoogle Scholar
  5. Freitag D, Scheunert I, Klein W, Korte F (1984) Long-term fate of 4-chloroaniline-14C in soil and plants under outdoor conditions. A contribution to terrestrial ecotoxicology of chemicals. J Agric Food Chem 32(2):203–207CrossRefGoogle Scholar
  6. Furman OS (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44(16):6423–6428CrossRefGoogle Scholar
  7. Ghauch A, Ayoub G, Naim S (2013) Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution. Chem Eng J 228:1168–1181CrossRefGoogle Scholar
  8. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8(3):501–551CrossRefGoogle Scholar
  9. Gu X, Wang Y, Miao Z, Lu S, Qiu Z, Sui Q, Guo X (2017) Degradation of trichloroethylene in aqueous solution by persulfate activated with Fe(III)–EDDS complex. Res Chem Intermed 43(1):1–13CrossRefGoogle Scholar
  10. Huang KC, Couttenye RA, Hoag GE (2002) Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). J Soil Contam 11(3):447–448CrossRefGoogle Scholar
  11. Hussain I, Zhang Y, Huang S, Du X (2012) Degradation of p-chloroaniline by persulfate activated with zero-valent iron. Chem Eng J 203(5):269–276CrossRefGoogle Scholar
  12. Keum YS, Li QX (2004) Reduction of nitroaromatic pesticides with zero-valent iron. Chemosphere 54(3):255–263CrossRefGoogle Scholar
  13. Le C, Liang J, Wu J, Li P, Wang X, Zhu N, Yang B (2011) Effective degradation of para-chloronitrobenzene through a sequential treatment using zero-valent iron reduction and Fenton oxidation. Water Sci Technol 64(10):2126–2131CrossRefGoogle Scholar
  14. Li H, Wan J, Ma Y, Huang M, Wang Y, Chen Y (2014a) New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions. Chem Eng J 250:137–147CrossRefGoogle Scholar
  15. Li H, Zhang Z, Xu X, Liang J, Xia S (2014b) Bioreduction of para-chloronitrobenzene in a hydrogen-based hollow-fiber membrane biofilm reactor: effects of nitrate and sulfate. Biodegradation 25(2):205–215CrossRefGoogle Scholar
  16. Liang C, Bruell CJ, Marley MC, Sperry KL (2004) Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 55(9):1213–1223CrossRefGoogle Scholar
  17. Liang C, Wang ZS, Bruell CJ (2007) Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66(1):106–113CrossRefGoogle Scholar
  18. LINCH AL (1974) Biological monitoring for industrial exposure to cyanogenic aromatic nitro and amino compounds. Am Ind Hyg Assoc J 35(7):426–432CrossRefGoogle Scholar
  19. Liu Z, Guo W, Han X, Li X, Ke Z, Qiao Z (2016) In situ remediation of ortho -nitrochlorobenzene in soil by dual oxidants (hydrogen peroxide/persulfate). Environ Sci Pollut Res Int 23(19):1–6CrossRefGoogle Scholar
  20. Matzek LW, Carter KE (2016) Activated persulfate for organic chemical degradation: a review. Chemosphere 151:178–188CrossRefGoogle Scholar
  21. Nefso EK, Burns SE, McGrath CJ (2005) Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron. J Hazard Mater 123(1–3):79–88CrossRefGoogle Scholar
  22. Nie M, Yan C, Li M, Wang X, Bi W, Dong W (2015) Degradation of chloramphenicol by persulfate activated by Fe2+ and zerovalent iron. Chem Eng J 279:507–515CrossRefGoogle Scholar
  23. Oh S, Kang SG, Chiu PC (2010) Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron. Sci Total Environ 408(16):3464–3468CrossRefGoogle Scholar
  24. Schultz CA, Grundl TJ (2000) pH Dependence on reduction rate of 4-Cl-nitrobenzene by Fe(II)/montmorillonite systems. Environ Sci Technol 34(17):3641–3648CrossRefGoogle Scholar
  25. USEPA (1988) National pollutant discharge elimination system, code of federal regulations. Agency EP, US Government Printing Office, Washington, DCGoogle Scholar
  26. Waldemer RH, Tratnyek PG (2006) Kinetics of contaminant degradation by permanganate. Environ Sci Technol 40(3):1055–1061CrossRefGoogle Scholar
  27. Wei X, Gao N, Li C, Deng Y, Zhou S, Li L (2016) Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water. Chem Eng J 285:660–670CrossRefGoogle Scholar
  28. Wu Y, Gan L, Zhang S, Jiang B, Song H, Li W, Li A (2017) Enhanced electrocatalytic dechlorination of para-chloronitrobenzene based on Ni/Pd foam electrode. Chem Eng J 316:146–153CrossRefGoogle Scholar
  29. Xu X, Zhou H, Zhou M (2006) Catalytic amination and dechlorination of para-nitrochlorobenzene (p-NCB) in water over palladium-iron bimetallic catalyst. Chemosphere 62(5):847–852CrossRefGoogle Scholar
  30. Zhao J, Zhang Y, Xie Q, Chen S (2010) Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Sep Purif Technol 71(3):302–307CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of SciencesNanjing Agricultural UniversityNanjingChina
  2. 2.South China Institute of Environmental ScienceMinistry of Environmental Protection (MEP)GuangzhouChina
  3. 3.Institute of Soil ScienceChinese Academy of SciencesNanjingChina

Personalised recommendations