Advertisement

Roundup® Herbicide Decreases Quality Parameters of Spermatozoa of Silversides Odontesthes Humensis

  • Tony Silveira
  • Antonio Sergio Varela Junior
  • Carine Dahl Corcini
  • William B. Domingues
  • Mariana Remião
  • Lucas Santos
  • Bruna Barreto
  • Ingrid Lessa
  • Diego Martins
  • Robert T. Boyle
  • Patrícia Gomes Costa
  • Adalto Bianchini
  • Ricardo B. Robaldo
  • Vinicius Farias Campos
Article

Abstract

The silverside (Odontesthes humensis) is a very interesting model for toxicological studies due its high sensitivity and need for good water quality. The aim of this study was to evaluate the effects of Roundup on spermatozoa of O. humensis, after acute exposure. The fish were exposed to 0 and 7.8 mg L−1 (a.e.) of glyphosate, respectively. Through computer-assisted sperm analysis, a significant decrease in concentration, total and progressive motility, average path distance, straight line distance, path average velocity, curved line velocity, straight line velocity linearity, wobble, amplitude of lateral head displacement, cross beat frequency, and motility period of silverside spermatozoa exposed to Roundup was observed. Also, increase in membrane fluidity, ROS production and lipid peroxidation and a decrease in the mitochondrial functionality was observed in spermatozoa of Roundup exposed silversides. It was demonstrated that Roundup exposure in a concentration that can be achieve in natural water bodies soon after its application in fields is able to cause losses in several sperm quality parameters, consequently decreasing the fertilization potential of O. humensis spermatozoa.

Keywords

Glyphosate Sperm Fish Toxicity South America 

Notes

Acknowledgements

This study was supported by the Brazilian CAPES, CNPQ (Grant No. 422292/2016-8) and FAPERGS (Grant No. 16/2551).

References

  1. Acosta IB, Junior ASV, Silva EF et al (2016) Effects of exposure to cadmium in sperm cells of zebrafish, Danio rerio. Toxicol Rep 3:696–700.  https://doi.org/10.1016/j.toxrep.2016.08.002 CrossRefGoogle Scholar
  2. Agarwal A, Makker K, Sharma R (2008) Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 59:2–11.  https://doi.org/10.1111/j.1600-0897.2007.00559.x CrossRefGoogle Scholar
  3. Akcha F, Spagnol C, Rouxel J (2012) Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos. Aquat Toxicol 106–107:104–113.  https://doi.org/10.1016/j.aquatox.2011.10.018 CrossRefGoogle Scholar
  4. Albinati ACL, Moreira ELT, Albinati RCB et al (2009) Biomarcadores histológicos – toxicidade crônica pelo roundup em piauçu (Leporinus macrocephalus). Arq Bras Med Vet Zootec 61:621–627.  https://doi.org/10.1590/S0102-09352009000300015 CrossRefGoogle Scholar
  5. Amarante Junior OP, Dos Santos TCR, Brito NM, Ribeiro ML (2002) Glifosato: propriedades, toxicidade, usos e legislação. Quim Nova 25:589–593.  https://doi.org/10.1590/S0100-40422002000400014 CrossRefGoogle Scholar
  6. Bemvenuti MA (2006) Silversides in South Brazil: morphological and ecological aspects. Biocell 30:111–118Google Scholar
  7. Campanella D, Hughes LC. Unmack PJ et al (2015) Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria). Mol Phylogenet Evol 86:8–23.  https://doi.org/10.1016/j.ympev.2015.03.001 CrossRefGoogle Scholar
  8. Christen R, Gatti J-L, Billard R (1987) Trout sperm motility: the transient movement of trout sperm is related to changes in the concentration of ATP following the activation of the flagellar movement. Eur J Biochem 166:667–671.  https://doi.org/10.1111/j.1432-1033.1987.tb13565.x CrossRefGoogle Scholar
  9. Degenhardt D, Cessna AJ, Raina R et al (2012) Dissipation of six acid herbicides in water and sediment of two Canadian prairie wetlands. J Environ Sci Heal Part B 47:631–639.  https://doi.org/10.1002/etc.598 CrossRefGoogle Scholar
  10. Gerber MD, Varela Junior AS, Caldas JS et al (2016) Toxicity evaluation of parboiled rice effluent using sperm quality of zebrafish as bioindicator. Ecol Indic 61:214–218.  https://doi.org/10.1016/j.ecolind.2015.09.016 CrossRefGoogle Scholar
  11. Gillan L, Evans G, Maxwell WMC (2005) Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology 63:445–457.  https://doi.org/10.1016/j.theriogenology.2004.09.024 CrossRefGoogle Scholar
  12. Glover RE, Smith RR, Jones MV et al (1999) An EPR investigation of surfactant action on bacterial membranes. Fed Eur Microbiol Soc Microbiol Lett 177:57–62.  https://doi.org/10.1016/S0378-1097(99)00289-X CrossRefGoogle Scholar
  13. Goldsborough LG, Brown DJ (1993) Dissipation of glyphosate and aminomethylphosphonic acid in water and sediments of boreal forest ponds. Environ Toxicol Chem 12:1139–1147.  https://doi.org/10.1002/etc.5620120702 CrossRefGoogle Scholar
  14. Guilherme S, Gaivão I, Santos MA, Pacheco M (2010) European eel (Anguilla anguilla) genotoxic and pro-oxidant responses following short-term exposure to Roundup® – a glyphosate-based herbicide. Mutagenesis 25:523–530.  https://doi.org/10.1093/mutage/geq038 CrossRefGoogle Scholar
  15. Hagedorn M, Mccarthy M, Carter VL, Meyers SA (2012) Oxidative stress in zebrafish (Danio rerio) sperm. PLoS ONE 7:e39397.  https://doi.org/10.1371/journal.pone.0039397 CrossRefGoogle Scholar
  16. Harayashiki CAY, Varela Junior AS, Machado AAS et al (2013) Toxic effects of the herbicide Roundup in the guppy Poecilia vivipara acclimated to fresh water. Aquat Toxicol 142–143:176–184.  https://doi.org/10.1016/j.aquatox.2013.08.006 CrossRefGoogle Scholar
  17. He S, Woods IIILC (2004) Effects of dimethyl sulfoxide and glycine on cryopreservation induced damage of plasma membranes and mitochondria to striped bass (Morone saxatilis) sperm. Cryobiology 48:254–262.  https://doi.org/10.1016/j.cryobiol.2004.01.009 CrossRefGoogle Scholar
  18. Hulak M, Gazo I, Shaliutina A, Linhartova P (2013) In vitro effects of bisphenol A on the quality parameters, oxidative stress, DNA integrity and adenosine triphosphate content in sterlet (Acipenser ruthenus) spermatozoa. Comp Biochem Physiol C 158:64–71.  https://doi.org/10.1016/j.cbpc.2013.05.002 CrossRefGoogle Scholar
  19. Ibrahim YA (2015) A regulatory perspective on the potential carcinogenicity of glyphosate. J Toxicol Health 2:1.  https://doi.org/10.7243/2056-3779-2-1 CrossRefGoogle Scholar
  20. Langiano do VC, Martinez CBR (2008) Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comp Biochem Physiol C 147:222–231.  https://doi.org/10.1016/j.cbpc.2007.09.009 CrossRefGoogle Scholar
  21. Liu Q, Wang X, Wang W et al (2015) Effect of the addition of six antioxidants on sperm motility, membrane integrity and mitochondrial function in red seabream (Pagrus major) sperm cryopreservation. Fish Physiol Biochem 41:413–422.  https://doi.org/10.1007/s10695-014-9993-9 CrossRefGoogle Scholar
  22. Lopes FM, Varela Junior AS, Corcini CD et al (2014) Effect of glyphosate on the sperm quality of zebrafish Danio rerio. Aquat Toxicol 155:322–326.  https://doi.org/10.1016/j.aquatox.2014.07.006 CrossRefGoogle Scholar
  23. Lorenzetti S, Altieri I, Arabi S et al (2011) Innovative non-animal testing strategies for reproductive toxicology: the contribution of Italian partners within the EU project reprotect. Ann Ist Super Sanita 47:429–444.  https://doi.org/10.4415/ANN_11_04_16 CrossRefGoogle Scholar
  24. Lushchak OV, Kubrak OI, Storey JM et al (2009) Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 76:932–937.  https://doi.org/10.1016/j.chemosphere.2009.04.045 CrossRefGoogle Scholar
  25. Perchec G, Jeulin C, Cosson J et al (1995) Relationship between sperm ATP content and motility of carp spermatozoa. J Cell Sci 108:747–753Google Scholar
  26. Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66.  https://doi.org/10.1016/j.envpol.2008.01.015 CrossRefGoogle Scholar
  27. Petrunkina AM, Volker G, Weitze K-F et al (2005) Detection of cooling-induced membrane changes in the response of boar sperm to capacitating conditions. Theriogenology 63:2278–2299.  https://doi.org/10.1016/j.theriogenology.2004.10.008 CrossRefGoogle Scholar
  28. Pettitt MJ, Buhr MM (1998) Extender components and surfactants affect boar sperm function and membrane behaviour during cryopreservation. J Androl 19:736–746Google Scholar
  29. Purvis A, Gittleman JL, Cowlishaw G et al (2000) Predicting extinction risk in declining species. Proc Roy Soc Lond B 267:1947–1952.  https://doi.org/10.1098/rspb.2000.1234 CrossRefGoogle Scholar
  30. Roychoudhury S, Massanyi P, Bulla J et al (2010) In vitro copper toxicity on rabbit spermatozoa motility, morphology and cell membrane integrity. J Environ Sci Health A 45:1482–1491.  https://doi.org/10.1080/10934529.2010.506092 CrossRefGoogle Scholar
  31. Ruiz-Toledo J, Castro R, Rivero-Pérez N et al (2014) Occurrence of glyphosate in water bodies derived from intensive agriculture in a tropical region of southern Mexico. Bull Environ Contam Toxicol 93:289–293.  https://doi.org/10.1007/s00128-014-1328-0 CrossRefGoogle Scholar
  32. Salbego J, Pretto A, Gioda CR et al (2010) Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and hematological parameters in Piava (Leporinus obtusidens). Arch Environ Contam Toxicol 58:740–745.  https://doi.org/10.1007/s00244-009-9464-y CrossRefGoogle Scholar
  33. Sánchez JAA, Varela Junior AS, Corcini CD et al (2017) Effects of Roundup formulations on biochemical biomarkers and male sperm quality of the livebearing Jenynsia multidentata. Chemosphere 177:200–210.  https://doi.org/10.1016/j.chemosphere.2017.02.147 CrossRefGoogle Scholar
  34. Shiva M, Gautam AK, Verma Y et al (2011) Association between sperm quality, oxidative stress, and seminal antioxidant activity. Clin Biochem 44:319–324.  https://doi.org/10.1016/j.clinbiochem.2010.11.009 CrossRefGoogle Scholar
  35. Silva de ACJ, Remião MH, Lucas CG et al (2017) Effects of chitosan-coated lipid-core nanocapsules on bovine sperm cells. Toxicol Vitro 40:214–222.  https://doi.org/10.1016/j.tiv.2017.01.017 CrossRefGoogle Scholar
  36. Topal A, Atamanalp M, Uçar A et al (2015) Effects of glyphosate on juvenile rainbow trout (Oncorhynchus mykiss): transcriptional and enzymatic analyses of antioxidant defence system, histopathological liver damage and swimming performance. Ecotoxicol Environ Saf 111:206–214.  https://doi.org/10.1016/j.ecoenv.2014.09.027 CrossRefGoogle Scholar
  37. Varela Junior AS, Corcini CD, Gheller SMM et al (2012) Use of amides as cryoprotectants in extenders for frozen sperm of tambaqui, Colossoma macropomum. Theriogenology 78:244–251.  https://doi.org/10.1016/j.theriogenology.2012.02.029 CrossRefGoogle Scholar
  38. Vereecken H (2005) Mobility and leaching of glyphosate: a review. Pest Manag Sci 61:1139–1151.  https://doi.org/10.1002/ps.1122 CrossRefGoogle Scholar
  39. Zebral YD, Lansini LR, Costa PG et al (2018) A glyphosate-based herbicide reduces fertility, embryonic upper thermal tolerance and alters embryonic diapause of the threatened annual fish Austrolebias nigrofasciatus. Chemosphere 196:260–269.  https://doi.org/10.1016/j.chemosphere.2017.12.196 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tony Silveira
    • 1
    • 2
  • Antonio Sergio Varela Junior
    • 2
    • 3
  • Carine Dahl Corcini
    • 3
  • William B. Domingues
    • 1
  • Mariana Remião
    • 4
  • Lucas Santos
    • 1
  • Bruna Barreto
    • 1
  • Ingrid Lessa
    • 1
  • Diego Martins
    • 3
  • Robert T. Boyle
    • 2
  • Patrícia Gomes Costa
    • 2
  • Adalto Bianchini
    • 2
  • Ricardo B. Robaldo
    • 5
  • Vinicius Farias Campos
    • 1
  1. 1.Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento TecnológicoUniversidade Federal de PelotasPelotasBrazil
  2. 2.Instituto de Ciências BiológicasUniversidade Federal do Rio GrandeRio GrandeBrazil
  3. 3.Laboratório de Reprodução Animal Comparada, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos ContinentaisUniversidade Federal do Rio GrandeRio GrandeBrazil
  4. 4.Laboratório de Biotecnologia do Câncer, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento TecnológicoUniversidade Federal de PelotasPelotasBrazil
  5. 5.Laboratório de Fisiologia, Programa de Pós-Graduação em Biologia AnimalUniversidade Federal de PelotasPelotasBrazil

Personalised recommendations