Advertisement

Copper Bioaccumulation Kinetics in Swan Mussel, Anodonta cygnea (Linnaeus, 1758) During Waterborne Exposure to CuO Nanoparticles

  • Fateh Moëzzi
  • Seyyed Aliakbar Hedayati
  • Amir Ghadermarzi
Article

Abstract

This study was conducted to investigate bioaccumulation of copper in two internal organs (mantle and foot) of swan mussel, Anodonta cygnea (Linnaeus, 1758) in exposure to copper oxide nanoparticles (CuO NPs). Basal concentration of Cu in the mantle (3.15 ± 1.09 µg g−1 DW) was significantly (p < 0.05) lower than the foot (5.43 ± 1.54 µg g−1 DW). At the end of the exposure period, the highest concentration of Cu in both organs belonged to the highest exposure concentration. Calculated bioconcentration factor (BCF) values showed significant (p < 0.05) higher values for the mantle in each day and each exposure concentration (except the lowest exposure concentration) than the foot. For both organs, the highest and lowest BCFs occurred at the lowest and highest exposure concentrations, respectively. Cu concentration in both organs was significantly (p < 0.05) decreased after day 4. Based on the results, it was obvious that exposure to sub-lethal concentrations of CuO NPs would lead to the significant accumulation of copper in mantle and foot that may have adverse effects on this organism.

Keywords

Bivalves Nanotoxicology Internal organs Freshwater Bioaccumulation 

References

  1. Abdullah MH, Sidi J, Aris AZ (2007) Heavy metals (Cd, Cu, Cr, Pb, and Zn) in Meretrix meretrix roding, water and sediments from estuaries in Sabah, North Borneo. Int J Environ Sci Educ 2(3):69–74Google Scholar
  2. Al-Subiai SN, Moody AJ, Mustafa SA, Jha AN (2011) A multiple biomarker approach to investigate the effects of copper on the marine bivalve mollusc, Mytilus edulis. Ecotoxicol Environ Saf 74(7):1913–1920.  https://doi.org/10.1016/j.ecoenv.2011.07.012 CrossRefGoogle Scholar
  3. Balbi T, Ciacci C, Grasselli E, Smerilli A, Voci A, Canesi L (2017) Utilization of Mytilus digestive gland cells for the in vitro screening of potential metabolic disruptors in aquatic invertebrates. Comp Biochem Physiol C 191:26–35.  https://doi.org/10.1016/j.cbpc.2016.08.009 Google Scholar
  4. Bebianno MJ, Geret F, Hoarau P, Serafim MA, Coelho MR, Gnassia-Barelli M, Romeo M (2004) Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers 9(4–5):305–330.  https://doi.org/10.1080/13547500400017820 CrossRefGoogle Scholar
  5. Buffet PE, Tankoua OF, Pan JF, Berhanu D, Herrenknecht C, Poirier L, Amiard-Triquet C, Amiard JC, Bérard JB, Risso C, Guibbolini M (2011) Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84(1):166–174.  https://doi.org/10.1016/j.chemosphere.2011.02.003 CrossRefGoogle Scholar
  6. Canesi L, Corsi I (2016) Effects of nanomaterials on marine invertebrates. Sci Total Environ 565:933–940CrossRefGoogle Scholar
  7. Canesi L, Fabbri R, Gallo G, Vallotto D, Marcomini A, Pojana G (2010) Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat Toxicol 100(2):168–177.  https://doi.org/10.1016/j.aquatox.2010.04.009 CrossRefGoogle Scholar
  8. Châtel A, Hamer B, Talarmin H, Dorange G, Schröder HC, Müller WE (2010) Activation of MAP kinase signaling pathway in the mussel Mytilus galloprovincialis as biomarker of environmental pollution. Aquat Toxicol 96(4):247–255.  https://doi.org/10.1016/j.aquatox.2009.11.002 CrossRefGoogle Scholar
  9. Châtel A, Hamer B, Jakšić Ž, Vucelić V, Talarmin H, Dorange G, Schröder HC, Müller WEG (2011) Induction of apoptosis in mussel Mytilus galloprovincialis gills by model cytotoxic agents. Ecotoxicology 20(8):2030–2041.  https://doi.org/10.1007/s10646-011-0746-6 CrossRefGoogle Scholar
  10. Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI, Brewer T, Davis J, Petersen EJ, Wood L (2012) Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products. Sci Total Environ 421:267–272.  https://doi.org/10.1016/j.scitotenv.2012.01.025 CrossRefGoogle Scholar
  11. Dai L, Syberg K, Banta GT, Selck H, Forbes VE (2013) Effects, uptake, and depuration kinetics of silver oxide and copper oxide nanoparticles in a marine deposit feeder, Macoma balthica. ACS Sustain Chem Eng 1(7):760–767.  https://doi.org/10.1021/sc4000434 CrossRefGoogle Scholar
  12. Ferry JL, Craig P, Hexel C, Sisco P, Frey R, Pennington PL, Fulton MH, Scott IG, Decho AW, Kashiwada S, Murphy CJ, Shaw TJ (2009) Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4(7):441–444CrossRefGoogle Scholar
  13. George SG, Pirie BJS, Calabrese A, Nelson DA (1986) Biochemical and ultrastructural observations of long-term silver accumulation in the mussel, Mytilus edulis. Mar Environ Res 18(4):255–265.  https://doi.org/10.1016/0141-1136(86)90025-5 CrossRefGoogle Scholar
  14. Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45(21):9356–9362.  https://doi.org/10.1021/es200955s CrossRefGoogle Scholar
  15. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222.  https://doi.org/10.1021/es9015553 CrossRefGoogle Scholar
  16. Hu W, Culloty S, Darmody G, Lynch S, Davenport J, Ramirez-Garcia S, Dawson KA, Lynch I, Blasco J, Sheehan D (2014) Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: a redox proteomic investigation. Chemosphere 108:289–299.  https://doi.org/10.1016/j.chemosphere.2014.01.054 CrossRefGoogle Scholar
  17. Johansson C, Cain DJ, Luoma SN (1986) Variability in the fractionation of Cu, Ag, and Zn among cytosolic proteins in the bivalve Macoma balthica. Mar Ecol Prog Ser 28:87–97CrossRefGoogle Scholar
  18. Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732.  https://doi.org/10.1021/tx800064j CrossRefGoogle Scholar
  19. Langston WJ, Bebianno MJ, Burt GR (1998) Metal handling strategies in molluscs. In: Langston WJ, Bebianno MJ (ed) Metal metabolism in aquatic environments. Springer, Boston, MA, pp 219–283Google Scholar
  20. Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6(1):1–12.  https://doi.org/10.1186/1743-8977-6-14 CrossRefGoogle Scholar
  21. Luoma SN, Cain DJ, Ho K, Hutchinson A (1983) Variable tolerance to copper in two species from San Francisco Bay. Mar Environ Res 10(4):209–222.  https://doi.org/10.1016/0141-1136(83)90002-8 CrossRefGoogle Scholar
  22. Maria VL, Bebianno MJ (2011) Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo (a) pyrene and copper. Comp Biochem Physiol C 154(1):56–63.  https://doi.org/10.1016/j.cbpc.2011.02.004 Google Scholar
  23. Metian M, Bustamante P, Hédouin L, Warnau M (2008) Accumulation of nine metals and one metalloid in the tropical scallop Comptopallium radula from coral reefs in New Caledonia. Environ Pollut 152(3):543–552CrossRefGoogle Scholar
  24. Moëzzi F, Javanshir A, Eagderi S, Poorbagher H, Sallaki M (2013a) Evaluation of bivalve clearance rate (CR) as a physiological indicator of heavy metal toxicity in freshwater mussel, Anodonta cygnea (Linea, 1876). Sci J Animal Sci 2(4):89–94Google Scholar
  25. Moëzzi F, Javanshir A, Eagderi S, Poorbagher H (2013b) Tissue specific accumulation and histopathological alterations of zinc and chromium and their effects on clearance rate in Swan mussel, Anodonta cygnea. Am Eurasian J Agric Environ Sci 13(6):740–746.  https://doi.org/10.5829/idosi.aejaes.2013.13.06.73202 Google Scholar
  26. Moëzzi F, Hedayati SA, Ghadermazi A (2018) Ecotoxicological impacts of exposure to copper oxide nanoparticles on the gill of the Swan mussel, Anodonta cygnea (Linnaeus, 1758). Molluscan Res 38(3):187–197.  https://doi.org/10.1080/13235818.2018.1441591 CrossRefGoogle Scholar
  27. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976.  https://doi.org/10.1016/j.envint.2006.06.014 CrossRefGoogle Scholar
  28. Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15.  https://doi.org/10.1016/j.jhazmat.2010.11.020 CrossRefGoogle Scholar
  29. Pourang N, Dennis JH, Ghourchian H (2004) Tissue distribution and redistribution of trace elements in shrimp species with the emphasis on the roles of metallothionein. Ecotoxicology 13(6):519–533.  https://doi.org/10.1023/B:ECTX.0000037189.80775.9c CrossRefGoogle Scholar
  30. Rocha TL, Gomes T, Sousa VS, Mestre NC, Bebianno MJ (2015) Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview. Mar Environ Res 111:74–88.  https://doi.org/10.1016/j.marenvres.2015.06.013 CrossRefGoogle Scholar
  31. Salari Joo H, Kalbassi MR, Lee JH, Johari SA (2013) Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity. Aquat Toxicol 140–141:398–406.  https://doi.org/10.1016/j.aquatox.2013.07.003 CrossRefGoogle Scholar
  32. Serafim A, Bebianno MJ (2009) Metallothionein role in the kinetic model of copper accumulation and elimination in the clam Ruditapes decussatus. Environ Res 109(4):390–399.  https://doi.org/10.1016/j.envres.2009.03.001 CrossRefGoogle Scholar
  33. Shaw BJ, Al-Bairuty G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116:90–101.  https://doi.org/10.1016/j.aquatox.2012.02.032 CrossRefGoogle Scholar
  34. United States Geological Survey (1991) Trace metals in clams (Macoma balthica) and sediment at the Palo Alto Mudflat in South San Francisco Bay: April 1990–April 1991; Open File Report 91–460; U.S. Geological Survey, Denver. http://pubs.usgs.gov/of/1991/0460/report.pdf. Accessed 2 May 2013
  35. Van Geest J (2010) Bioaccumulation of sediment-associated contaminants in freshwater organisms: development and standardization of a laboratory method. PhD thesis, University of GuelphGoogle Scholar
  36. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780.  https://doi.org/10.3762/bjnano.6.181 CrossRefGoogle Scholar
  37. Viarengo A, Canesi L, Pertica M, Poli G, Moore MN, Orunesu M (1990) Heavy metal effects on lipid peroxidation in the tissues of mytilus gallopro vincialis lam. Comp Biochem Physiol C Comp Pharmacol 97(1):37–42CrossRefGoogle Scholar
  38. Viarengo A, Zanicchi G, Moore MN, Orunesu M (1981) Accumulation and detoxication of copper by the mussel Mytilus galloprovincialis Lam: a study of the subcellular distribution in the digestive gland cells. Aquat Toxicol 1(3–4):147–157.  https://doi.org/10.1016/0166-445X(81)90011-4 CrossRefGoogle Scholar
  39. Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337.  https://doi.org/10.1016/j.pmatsci.2013.09.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Fisheries, Faculty of Natural ResourcesUniversity of TehranKarajIran
  2. 2.Department of Aquatic Production and Exploitation, Faculty of Fisheries and Environmental SciencesGorgan UniversityGorganIran

Personalised recommendations