Advertisement

Bioaccumulation of Total Mercury (THg) in Catfish (Siluriformes, Ariidae) with Different Sexual Maturity from Cananéia-Iguape Estuary, SP, Brazil

  • Giulliana D. Pecoraro
  • Marcos A. Hortellani
  • Yuri S. Hagiwara
  • Elisabete S. Braga
  • Jorge E. Sarkis
  • Juliana S. AzevedoEmail author
Article

Abstract

In order to improve the knowledge of total mercury (THg) bioaccumulation in bioindicator species of sea catfish (Siluriformes, Ariidae) and taking into account the relatively recent approach with respect to estuarine fish on the Brazilian coast, 65 individuals were caught in the northern and southern regions of the Cananeia estuary to determine the concentration of the THg in muscles, gills, gonads and kidney of the Cathorops spixii and Genidens genidens specimens. The difference in the THg accumulation associated to the maturity of the catfish reflects a differential metabolism regarding THg bioaccumulation in adults (males and females) and juveniles. These observations reinforce the importance of considering the maturity of the individual in order to understand the bioaccumulation and metabolism of fish under different environmental stress and conditions. Furthermore, abiotic conditions such as salinity should be evaluated in association with metabolic/biological conditions of the fish’s bioindicators, especially in environments with large natural or anthropogenic transition gradients.

Keywords

Metabolism Tissues Ecotoxicological thresholds Maturity Total mercury 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed

Research Involving Animal and Human Participants

This article does not contain any studies with human participants performed by any of the authors.

References

  1. Adams SM, McLean RB (1985) Estimation of largemouth bass, Micropterus salmoides lacépède, growth using the liver somatic index and physiological variables. J Fish Biol 26:111–126CrossRefGoogle Scholar
  2. Agência Nacional de Vigilância Sanitária (ANVISA) (2013) Ministério da Saúde, Brasil. Resolução nº 42, de 29 de agosto de 2013. Dispõe sobre o Regulamento Técnico MERCOSUL sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos. Available http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2013/rdc0042_29_08_2013.html. Accessed August 2018
  3. Amorim EP, Fávaro DIT, Berbel GBB, Braga ES (2008) Assessment of metal and trace element concentrations in the Cananéia estuary, Brazil, by neutron activation and atomic absorption techniques. J Radioanal Nucl Chem 278(2):485–489CrossRefGoogle Scholar
  4. Azevedo JS, Sarkis JES, Hortellani MA, Ladle RJ (2012a) Are Catfish (Ariidae) effective bioindicators for Pb, Cd, Hg, Cu and Zn? Water Air Soil Pollut 223:3911–3922CrossRefGoogle Scholar
  5. Azevedo JS, Sarkis JES, Oliveira TA, Ulrich JC (2012b) Tissue-specific mercury concentrations in two catfish species from the Brazilian coast. Braz J Oceanogr 60(2):211–219Google Scholar
  6. Dias ACL, Guimarães JRD, Malm O, Costa PAS (2008) Mercúrio total em músculo de cação Prionace glauca (Linnaeus, 1758) e de espadarte Xiphias gladius Linnaeus, 1758, na costa sul- sudoeste do Brasil e suas implicações para a saúde pública. Cad Saude Publica 24(9):2063–2070CrossRefGoogle Scholar
  7. Figueiredo JL, Menezes NA (1978) Manual de peixes marinhos do sudeste do Brasil. II. Teleostei (1). Museu de Zoologia da Universidade de São Paulo, São Paulo, 110Google Scholar
  8. Gomiero LM, Braga FMS (2003) Relação peso-comprimento e fator de condição para Cichla cf. ocellaris e Cichlamonoculus (Perciformes, Cichlidae) no reservatório de Volta Grande, rio Grande-MG/SP. Acta Sci 25(1):79–86Google Scholar
  9. Heath AG (1990) Water pollution and fish physiology. 2nd edn. CRC Press, London p 245Google Scholar
  10. Kalbassi MR, Salari-Joo H, Johari A (2011) Toxicity of silver nanoparticles in aquatic ecosystems: salinity as the main cause in reducing toxicity. Iran J Toxicol 5(12):436–443Google Scholar
  11. Kasper D, Palermo EFA, Dias ACMI, Ferreira GL, Leitão RP, Branco CWC, Malm O (2009) Mercury distribution in different tissues and trophic levels of fish from a tropical reservoir, Brazil. Neotrop Ichthyol 7(4):751–758CrossRefGoogle Scholar
  12. Kennish MJ (1991) Ecology of estuaries: anthropogenic effects. CRC Press, LondonGoogle Scholar
  13. Kojadinovic J, Potier M, Le Corre M, Cosson RP, Bustamante P (2007) Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environ Pollut 146:548–566CrossRefGoogle Scholar
  14. Lacerda LD, Malm O (2008) Contaminação por mercúrio em ecossistemas aquáticos: uma análise das áreas críticas. Estud Av 22(63):173–190CrossRefGoogle Scholar
  15. USEPA (1997) Guidance for assessing chemical contaminant data for use in fish advisories. Volume 2Risk Assessment and Fish Consumption LimitsSecond Edition. U.S. Environmental Protection Agency. Office of Water, Washington, DCGoogle Scholar
  16. Vazzoler AEA De (1996) Biologia da reprodução de peixes teleósteos: Teoria e Prática. Maringá. EDUEM. 169Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
Corrected publication 2018

Authors and Affiliations

  • Giulliana D. Pecoraro
    • 1
  • Marcos A. Hortellani
    • 2
  • Yuri S. Hagiwara
    • 1
  • Elisabete S. Braga
    • 3
  • Jorge E. Sarkis
    • 2
  • Juliana S. Azevedo
    • 1
    Email author
  1. 1.Institute of Environmental, Chemical and Pharmaceutical SciencesFederal University of São PauloDiademaBrazil
  2. 2.Institute of Energy and Nuclear ResearchSão PauloBrazil
  3. 3.Institute of OceanographyUniversity of São PauloSão PauloBrazil

Personalised recommendations