Aquatic Humic Substances: Relationship Between Origin and Complexing Capacity

  • María de Jesús González-Guadarrama
  • Ma. Aurora Armienta-Hernández
  • André H. Rosa
Article
  • 38 Downloads

Abstract

Aiming to determine the relationship between source and complexing capacity, humic substances obtained from three sites (Sorocaba and Itapanhau Brasilian rivers, and Xochimilco Lake in Mexico) were studied. Copper, manganese, zinc and arsenic complexing capacity were determined for the three substances under various pH conditions. Results showed similar complexing capacity for the three elements depending on the chemistry of each one and on the physico–chemical conditions. Speciation diagrams showed that these conditions affect both, the humic substances, and the transition metals and arsenic.

Keywords

Aquatic humic substances Complexation Transition metals Arsenic pH Redox 

Notes

Acknowledgements

CONACYT by Grant Number 447460, Olivia Cruz, Alejandra Aguayo and Nora Ceniceros by their collaboration.

References

  1. Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30(4):345–353CrossRefGoogle Scholar
  2. Bhattacharya P, Welch AH, Stollenwerkc KJ, McLaughlind MJ, Bundschuh J, Panaullah G (2007) Arsenic in the environment: biology and chemistry. Sci Total Environ 379:2–3; 109–120CrossRefGoogle Scholar
  3. Burba P, Rocha J, Klockow D (1994) Labile complexes of trace metals in aquatic humic substances: investigations by means of an ion exchange-based flow procedure. Fresenius J Anal Chem 349:800–807CrossRefGoogle Scholar
  4. Cabaniss SE (2009) Forward modeling of metal complexation by NOM: I. A priori prediction on of conditional constants and speciation. Environ Sci Technol 43:2838–2844CrossRefGoogle Scholar
  5. Camargo VM, Cruz TLE (1999) Substancias húmicas en agua para abastecimineto. Revista Ingeniería e Investigación 44:63–72Google Scholar
  6. Chakraborty P, Chakrabarti CL (2008) Competition from Cu(II), Zn(II) and Cd(II) in Pb(II) binding to Suwanne River fulvic acid. Water Air Soil Pollut 195(1–4):63–71CrossRefGoogle Scholar
  7. Chen C, Wang X, Jiang H, Hu W (2007) Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloids Surf A 302:121–125CrossRefGoogle Scholar
  8. Corami F, Capodaglio G, Turetta C, Bragadin M, Calace M, Petronio B (2007) Complexation of cadmium and copper by fluvial humic matter and effects on their toxicity. Ann Chim 97(1–2):25–37CrossRefGoogle Scholar
  9. Crossgrove J, Zheng W (2004) Manganese toxicity upon overexposure. NMR Biomed 17(8):544–553CrossRefGoogle Scholar
  10. De Oliveira LK, De AlmeidaMC, Fernandes, Kriese T, Rosa K AH (2015) Interaction of arsenic species with tropical river aquatic humic substancesenriched with aluminum and iron. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-015-5816-5 Google Scholar
  11. Elkins KM, Nelson DJ (2001) Fluorescence and FT-IR spectroscopic studies of Suwanne river fulvic acid complexation with aluminum, terbium and calcium. J Inorg Biochem 87:81–96CrossRefGoogle Scholar
  12. Erickson RJ, Benoit DA, Mattson VR, Leonard EN, Nelson HP (1996) The effects of water chemistry on the toxicity of copper to fathead minnous. Environ Toxicol Chem 15(2):181–193CrossRefGoogle Scholar
  13. Gaetke LM, Kuang CC (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189(1–2):147–163CrossRefGoogle Scholar
  14. Gavin CE, Gunter KK, Gunter TE (1999) Manganese and calcium transport in mitochondria, implications for manganese toxicity. PubMed Central 20:2–3; 445–453Google Scholar
  15. Goveia D, Aparecida LF, Burba P, Fernandes F, Dias F, Rosa AH (2010) Approach combining on-line metal exchange and tangential-flow ultrafiltration for in-situ characterization of metal species in humic hydrocolloids. Anal Bioanal Chem 397:851–860CrossRefGoogle Scholar
  16. Irving H, WilliamsR., (1953) The stability of transition-metal complexes. J Chem Soc.  https://doi.org/10.1039/JR9530003192 Google Scholar
  17. John J, Salbu B, Gjessing ET, Bjornstad HE (1988) Effect of pH, humus concentration and molecular weight on conditional stability constants of cadmium. Wat Res 22(11):1381–1388CrossRefGoogle Scholar
  18. Kononova MM (1966) Soil organic matter its nature, its role in soil formation and in soil fertility, 2a edn. Pergamon Press, OxfordGoogle Scholar
  19. Lagier T, Feuillade G, Matejka G (2000) Interactions between copper and organic macromolecules: determination of conditional complexation constants. Agronomie 20:537–546CrossRefGoogle Scholar
  20. Laglera LM, Van den Berg CMG (2009) Evidence for geochemical control iron by humic substances in seawater. Limnol Oceanogr 54(2):610–619CrossRefGoogle Scholar
  21. Lambert J, Buddrus J, Burba P (1995) Evaluation of conditional stability constants of dissolved aluminum/humic substance complexes by means of 27Al nuclear magnetic resonance. J Anal Chem 351:83–87Google Scholar
  22. Lippold H, Lippmann-Pipke J (2009) Effect of humic matter on metal adsorption onto clay material: testing the linear additive model. J of Contam Hidrol 109:40–48CrossRefGoogle Scholar
  23. Liu J, Wang J, Chen Y, Lippold H, Lippman-Pipke J (2010) Comparative characterization of two natural humic acids in the Pearl River Basin, China and their environmental implications. J Environ Sci 22(11):1695–1702CrossRefGoogle Scholar
  24. López-López E, Sedeño-Dáz JE, Perozzi F (2006) Lipid peroxidation and acetylcholisterase activity as biomarkers in the Black Sailfin GSoodeid, Girardinichthys viviparous (Bustammonte), exposed to wáter from Lake Xochimilco (Mexico). Aquat Ecosyst Health Manag 9(3):379–385CrossRefGoogle Scholar
  25. Munier-Lamy C, Adrian PH, Berthelin J, Rouiller J (1986) Comparison of binding abilities of fulvic and humic acids extracted from recent marine sediments with UO2 2+. Org Geochem 9(6):258–292CrossRefGoogle Scholar
  26. Rudd T, Sterritt RM, Lester JN (1984) Formation and conditional stability constants of complexes formed between heavy metals and bacterial extracellular polymers. Water Res 18(3):379–384CrossRefGoogle Scholar
  27. Sachs S, Bernhard G (2011) Humic acid model substances with pronounced redox functionality for the study of environmentally relevant interaction processes of metal ions in the presence of humic acid. Geoderma 162:132–140CrossRefGoogle Scholar
  28. Silva-Pinto V, Arriaza B, Standen V, (2010) Evaluación de la frecuencia de espina bífida oculta y su posible relación con el arsénico ambiental en una muestra prehispánica de la Quebrada de Camarones, norte de Chile. Rev Med Chile 138:461–469CrossRefGoogle Scholar
  29. Su Y, Liu H, Yang J (2012) Metals and metalloids in the water-bloom-forming cyanobacteria and ambient water from Nonquan Coast of Taihu Lake China. Bull Environ Contam Toxicol 89:439–443.  https://doi.org/10.1007/500128-012-0666-z CrossRefGoogle Scholar
  30. Thurman EM, Malcolm RL (1981) Preparative isolation of aquatic humic substances. Am Chem Soc 15(4):463–466Google Scholar
  31. Tipping E, Hurley MA (1992) A unifying model of cation binding by humic substances. Geochim Cosmochim 56:3627–3641CrossRefGoogle Scholar
  32. Tipping E, Rey-Castro C, Bryan SE, Hamilton-Taylor J (2002) Al and Fe bindind by humic substances in freshwaters. Geochim Cosmochim 66(18):3211–3224CrossRefGoogle Scholar
  33. Xue H, Kistler D, Sigg L (1995) Competition of copper and zinc for strong ligands in a eutrophic lake. Limnol Oceanogr 40(6):1142–1152CrossRefGoogle Scholar
  34. Yang R, Van den Berg CMG (2009) Metal complexation by humic substances in seawater. Environ Sci Technol 43:7192–7197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Posgrado en Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMexico cityMexico
  2. 2.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexico cityMexico
  3. 3.Departamento de Engenharia AmbientalUniversidade Estadual Paulista Júlio de Mesquita FilhoSão PauloBrazil

Personalised recommendations