Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Copper Toxicity in Leaves of Elodea canadensis Michx.

  • 460 Accesses

  • 12 Citations


Elodea canadensis (Canadian waterweed) has an ability to accumulate and bioconcentrate heavy metals. In this work, selected cellular responses for Cu treatment were studied in leaves of E. canadensis. Short term experiments, i.e. 1 week exposure to 0.5, 1, 5, and 10 μM of Cu indicated that concentrations up to 10 μM Cu causes a pronounced accumulation of photosynthetic pigments, a drastic degradation of soluble proteins with molecular weight above 18 kDa and a rapid accumulation of polypeptides with molecular weight below 14 kDa. The connection of these observations with copper detoxification mechanisms in aquatic macrophytes are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Andrade LR, Farina M, Amado Filho GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125. doi:10.1016/S0147-6513(03)00106-4

  2. Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1995) Short protocols in molecular biology. Wiley, New York

  3. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99. doi:10.1002/elps.1150080203

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

  5. Brown BT, Rattigan BM (1979) Toxicity of soluble copper and other metal ions to Elodea canadensis. Chemosphere 11:727–739

  6. Cobbett Ch, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182. doi:10.1146/annurev.arplant.53.100301.135154

  7. Cook CM, Kostidou A, Vardaka E, Lanaras T (1997) Effects of copper on the growth, photosynthesis and nutrient concentrations of Phaseolus vulgaris plants. Photosynthetica 34:179–193. doi:10.1023/A:1006832321946

  8. De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82:523–528. doi:10.1111/j.1399-3054.1991.tb02942.x

  9. De Vos CHR, Ten Bookum WM, Vooijs R, Schat H, De Kok LJ (1993) Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper tolerant and sensitive Silene cucubalus. Plant Physiol Biochem 31:151–158

  10. Devi SR, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: responses of antioxidant enzymes and antioxidants. Plant Sci 138:157–165. doi:10.1016/S0168-9452(98)00161-7

  11. Dewez D, Geoffroy L, Vernet G, Popovic R (2005) Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus. Aquat Toxicol 74:150–159. doi:10.1016/j.aquatox.2005.05.007

  12. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi:10.1016/0003-9861(59)90090-6

  13. Kappus H (1986) Overview of enzyme systems involved in bioreduction of drugs and in redox cycling. Biochem Pharmacol 35:1–6. doi:10.1016/0006-2952(86)90544-7

  14. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1

  15. Logani MK, Davies RE (1980) Lipid oxidation biological effects and antioxidants—a review. Lipids 15:485–495. doi:10.1007/BF02534079

  16. Ma M, Zhu W, Wang Z, Witkamp GJ (2003) Accumulation, assimilation and growth inhibition of copper on freshwater alga (Scenedesmus subspicatus 86.81 SAG) in the presence of EDTA and fulvic acid. Aquat Toxicol 63:221–228. doi:10.1016/S0166-445X(02)00179-0

  17. Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342. doi:10.1023/A:1006818815528

  18. Mal TK, Adorjan P, Corbett AL (2002) Effect of copper on growth of an aquatic macrophyte, Elodeac canadensis. Environ Pollut 120:307–311. doi:10.1016/S0269-7491(02)00146-X

  19. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

  20. Mazurek U, Naglik T, Wilczok A, Latocha M (1990) Effect of cadmium on photosynthetic pigments in synchronously growing Chlorella cells. Acta Biochim Pol 37:391–394

  21. Myśliwa-Kurdziel B, Strzałka K (2002) Influence of metals on the biosynthesis of photosynthetic pigments. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht, pp 201–228

  22. Myśliwa-Kurdziel B, Prasad MNV, Strzałka K (2004) Photosynthesis in metal plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer-Verlag, Heidelberg, pp 146–181 (Narosa New Delhi)

  23. Nyquist J, Greger M (2007) Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ Exp Bot 60:219–226. doi:10.1016/j.envexpbot.2006.10.009

  24. Prasad MNV, Malec P, Waloszek A, Bojko M, Strzałka K (2001) Physiological responses of Lemna trisulca L. (Duckweed) to cadmium and copper bioaccumulation. Plant Sci 161:881–889. doi:10.1016/S0168-9452(01)00478-2

  25. Prasad MNV, Greger M, Aravind P (2006) Biogeochemical cycling of trace elements by aquatic and wetland plants: relevance to phytoremediation. In: Prasad MNV, Sajwan KS, Naidu Ravi (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. CRC Press, Florida, pp 451–482 ((Taylor and Francis) Chap. 24)

  26. Rabe R, Schuster H, Kohler A (1982) Effects of copper chelate on photosynthesis and some enzyme activities of Elodea canadensis. Aquat Bot 14:67–175

  27. Rai UN, Gupta M, Tripathi RD, Chandra P (1998) Cadmium regulated nitrate reductase activity in Hydrilla verticillata. Water Air Soil Pollut 106:171–177. doi:10.1023/A:1004923908436

  28. Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48. doi:10.1007/BF02738153

  29. Ribeyre F, Boudou A (1994) Experimental study of inorganic and methylmercury bioaccumulation by four species of freshwater rooted macrophytes from water and sediment contamination sources. Ecotoxicol Environ Saf 28:270–286. doi:10.1006/eesa.1994.1052

  30. Romero-Puertas MC, Palma JM, Gomez M, del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686. doi:10.1046/j.1365-3040.2002.00850.x

  31. Sanita di Toppi L, Vurro E, Rossi L, Marabottini R, Musetti R, Careri M, Maffini M, Mucchino C, Corradini C, Badiani M (2007) Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes. Chemosphere 68:769–780. doi:10.1016/j.chemosphere.2006.12.092

  32. St-Cyr L, Campbell PGC, Guertin K (1994) Evaluation of the role of submerged plant beds in the metal budget of a fluvial lake. Hydrobiologia 291:141–156. doi:10.1007/BF00014705

  33. Vajpayee P, Rai UN, Ali MB, Tripathi RD, Kumar A, Singh SN (2005) Possible involvement of oxidative stress in copper-induced inhibition of nitrate reductase activity in Vallisneria spiralis L. Bull Environ Contam Toxicol 74:745–754. doi:10.1007/s00128-005-0645-8

  34. Weckx JEJ, Clijsters HMM (1996) Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96:506–512. doi:10.1111/j.1399-3054.1996.tb00465.x

  35. Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156. doi:10.1590/S1677-04202005000100012

Download references


KS and MNVP gratefully acknowledge the financial support through the Department of Science & Technology (DST), Government of India, New Delhi and the Ministry of Science and Higher Education (MNISW), Warsaw, Poland, in the framework of the “Indo-Polish Programme of Cooperation in Science & Technology” ref DST/INT/P-15/05 dt 7-11-2006.

Author information

Correspondence to Kazimierz Strzałka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malec, P., Maleva, M., Prasad, M.N.V. et al. Copper Toxicity in Leaves of Elodea canadensis Michx.. Bull Environ Contam Toxicol 82, 627–632 (2009). https://doi.org/10.1007/s00128-009-9650-7

Download citation


  • Copper toxicity
  • Photosynthetic pigments
  • Copper binding peptides
  • Elodea canadensis