Advertisement

The Älgliden Ni-Cu-Au deposit: magmatic sulfides in a subduction setting

  • Carole CordierEmail author
  • Kevin Coin
  • Nicholas T. Arndt
  • Pierre Cartigny
Article
  • 21 Downloads

Abstract

The origin of most major sulfide Ni-Cu deposits is attributed to the segregation of immiscible sulfide liquids from intraplate silicate melts, in response to assimilation of siliceous or sulfur-bearing rocks. The Älgliden gabbroic dike in the Skellefte district (Sweden) contains Ni-Cu sulfide mineralization that is atypical because it formed in an arc setting and has a high Au content and low Ni/Cu ratio. This association led previously to a model in which the mineralization was linked to the assimilation of Cu-Au porphyry wall rocks. Based on new petrological, geochemical, and S isotope analyses of the dike and its wall rocks, we propose that assimilation of mineralized wall rocks was not instrumental in the formation of the deposit. Instead, we propose that the sulfides segregated during olivine crystallization from an evolved arc basalt and were injected into the dike in an olivine-rich crystal mush. This scenario explains the uniform dissemination of sulfide ores within norites, together with the high Au content and low Ni/Cu ratio of the ores. We propose that sulfide segregation from oxidized arc basalt was triggered by a decrease in the oxidation state of the melt, likely due to the cooling of the silicate melt or to the interaction with meta-sediments rich in organic matter, as proposed for other arc-related Cu-Ni sulfide deposits in Fennoscandia and elsewhere. At Älgliden, melt reduction would have occurred relatively late during magma evolution, leading to the formation of an uneconomic deposit consisting of low Ni ores and lacking massive sulfides.

Keywords

Skellefte district Ni-Cu ore deposit Arc magma Gold Melt reduction 

Notes

Acknowledgments

This research project was funded by Boliden. The authors are grateful to Rodney Allen, Tobias Hermansson, Anders Zettergren, and Peter Svensson from Boliden for their help to define the research project, collect the samples, and provide access to existing data. Valentina Batanova, Valérie Magnin, Sarah Bureau, Sylvain Campillo, and Nelly Assayag are thanked for their analytical support. We also thank Andrew Tomkins and David Holwell for their constructive comments, and Bernd Lehmann and Marco Fiorentini for their editorial work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

126_2019_921_MOESM1_ESM.xlsx (44 kb)
ESM 1 (XLSX 43 kb)
126_2019_921_MOESM2_ESM.docx (89 kb)
ESM 2 (DOCX 88 kb)
126_2019_921_MOESM3_ESM.xlsx (71 kb)
ESM 3 (XLSX 70 kb)
126_2019_921_MOESM4_ESM.docx (443 kb)
ESM 4 (DOCX 443 kb)

References

  1. Allen RL, Weihed P, Svenson S-A (1996) Setting of Zn-Cu-Au-Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden. Econ Geol 91:1022–1053CrossRefGoogle Scholar
  2. Alt JC, Shanks WC, Jackson MC (1993) Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet Sci Lett 119:477–494CrossRefGoogle Scholar
  3. Barnes SJ, Robertson JC (2019) Time scales and length scales in magma flow pathways and the origin of magmatic Ni-Cu-PGE ore deposits. Geosci Front 10:77–87CrossRefGoogle Scholar
  4. Barnes SJ, Lesher CM, Sproule RA (2007) Geochemistry of komatiites in the Eastern Goldfields Superterrane, Western Australia and the Abitibi Greenstone Belt, Canada, and implications for the distribution of associated Ni-Cu-PGE deposits. Applied Earth Science Trans Inst Min Metall B 116:167–187CrossRefGoogle Scholar
  5. Barnes SJ, Cruden AR, Arndt N, Saumur BM (2016) The mineral system approach applied to magmatic Ni-Cu-PGE sulphide deposits. Ore Geol Rev 76:296–316CrossRefGoogle Scholar
  6. Barnes SJ, Mungall JE, Le Vaillant M, Godel B, Lesher CM, Holwell D, Lightfoot PC, Krivolutskaya N, Wei B (2017) Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: disseminated and net-textured ores. Am Mineral 102:473–506CrossRefGoogle Scholar
  7. Barrière M (1976) Flowage differentiation: limitation of the “Bagnold effect” to the narrow intrusions. Contrib Mineral Petrol 55:139–145CrossRefGoogle Scholar
  8. Bejgarn T, Årebäck H, Weihed P, Nylander J (2011) Geology, petrology and alteration geochemistry of the Palaeoproterozoic intrusive hosted Älgträsk Au deposit, Northern Sweden. Geol Soc Lond Spec Publ 350:105–132CrossRefGoogle Scholar
  9. Bejgarn T, Söderlund U, Weihed P, Årebäck H, Ernst RE (2013) Palaeoproterozoic porphyry Cu-Au, intrusion-hosted Au and ultramafic Cu-Ni deposits in the Fennoscandian Shield: temporal constraints using U-Pb geochronology. Lithos 174:236–254CrossRefGoogle Scholar
  10. Bejgarn T, Weihed P, Årebäck H, Nylander J (2009) Intrusion-related mineralization in the Palaeo-proterozoic Jörn Granitoid Complex, northern Sweden. In: Patrick W (ed) Smart science for exploration and mining. SGA, Townsville, pp 921–923Google Scholar
  11. Botcharnikov RE, Linnen RL, Wilke M, Holtz F, Jugo PJ, Berndt J (2010) High gold concentrations in sulphide-bearing magma under oxidizing conditions. Nat Geosci 4:112–115CrossRefGoogle Scholar
  12. Burgisser A, Scaillet B (2007) Redox evolution of a degassing magma rising to the surface. Nature 445:194–197CrossRefGoogle Scholar
  13. Canfield DE, Raiswell R, Westrich JT, Reaves CM, Berner RA (1986) The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem Geol 54:149–155CrossRefGoogle Scholar
  14. Carmichael IS, Ghiorso MS (1986) Oxidation-reduction relations in basic magma: a case for homogeneous equilibria. Earth Planet Sci Lett 78:200–210CrossRefGoogle Scholar
  15. Carroll MR, Rutherford MJ (1985) Sulfide and sulfate saturation in hydrous silicate melts. J Geophys Res 90:601–612CrossRefGoogle Scholar
  16. Carroll MR, Rutherford MJ (1987) The stability of igneous anhydrite: experimental results and implications for sulfur behavior in the 1982 El Chichón trachyandesite and other evolved magmas. J Petrol 28:781–801CrossRefGoogle Scholar
  17. Chauvel C, Bureau S, Poggi C (2011) Comprehensive chemical and isotopic analyses of basalt and sediment reference materials. Geostand Geoanal Res 35:125–143CrossRefGoogle Scholar
  18. Chung H-Y, Mungall JE (2009) Physical constraints on the migration of immiscible fluids through partially molten silicates, with special reference to magmatic sulfide ores. Earth Planet Sci Lett 286:14–22CrossRefGoogle Scholar
  19. Crabtree SM, Lange RA (2012) An evaluation of the effect of degassing on the oxidation state of hydrous andesite and dacite magmas: a comparison of pre- and post-eruptive Fe2+ concentrations. Contrib Mineral Petrol 163:209–224CrossRefGoogle Scholar
  20. de Hoog JCM, Taylor BE, van Bergen MJ (2001) Sulfur isotope systematics of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones. Earth Planet Sci Lett 189:237–252CrossRefGoogle Scholar
  21. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  22. Evans KA (2012) The redox budget of subduction zones. Earth Sci Rev 113:11–32CrossRefGoogle Scholar
  23. Evans K, Tomkins A, Cliff J, Fiorentini M (2014) Insights into subduction zone sulfur recycling from isotopic analysis of eclogite-hosted sulfides. Chem Geol 365:1–19CrossRefGoogle Scholar
  24. Filoche C (2009) Geology of the Älgliden Cu-Ni-Au mineralization, northern Sweden. Master dissertation, University of LuleåGoogle Scholar
  25. Gaillard F, Scaillet B, Arndt NT (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–232CrossRefGoogle Scholar
  26. Gaillard F, Scaillet B, Pichavant M, Iacono-Marziano G (2015) The redox geodynamics linking basalts and their mantle sources through space and time. Chem Geol 418:217–233CrossRefGoogle Scholar
  27. Gibb FGF, Henderson CMB (1992) Convection and crystal settling in sills. Contrib Mineral Petrol 109:538–545CrossRefGoogle Scholar
  28. Gavrilenko M, Herzberg C, Vidito C, Carr MJ, Tenner T, Ozerov A (2016) A calcium-in-olivine geohygrometer and its application to subduction zone magmatism. J. Petrol. 57:1811-1832 Google Scholar
  29. Hoatson DM, Jaireth S, Jaques AL (2006) Nickel sulfide deposits in Australia: characteristics, resources, and potential. Ore Geol Rev 29:177–241CrossRefGoogle Scholar
  30. Ishihara S, Sasaki A (1989) Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the Sierra Nevada batholith—a reconnaissance study. Geology 17:788–791CrossRefGoogle Scholar
  31. Jégo S, Pichavant M (2012) Gold solubility in arc magmas: experimental determination of the effect of sulfur at 1000°C and 0.4GPa. Geochim Cosmochim Acta 84:560–592CrossRefGoogle Scholar
  32. Jenner FE, O'Neill HSC, Arculus RJ, Mavrogenes JA (2010) The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J Petrol 51:2445–2464CrossRefGoogle Scholar
  33. Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418CrossRefGoogle Scholar
  34. Jugo PJ, Luth RW, Richards JP (2005) An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300°C and 1.0 GPa. J Petrol 46:783–798CrossRefGoogle Scholar
  35. Jugo PJ, Wilke M, Botcharnikov RE (2010) Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity. Geochim Cosmochim Acta 74:5926–5938CrossRefGoogle Scholar
  36. Kamenetsky VS, Zelenski M, Gurenko A, Portnyagin M, Ehrig K, Kamenetsky M, Churikova T, Feig S (2017) Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): part II. Composition, liquidus assemblage and fractionation of the silicate melt. Chem Geol 471:92–110CrossRefGoogle Scholar
  37. Kathol B, Weihed P (2005) Description of regional geological and geophysical maps of the Skellefte District and surrounding areas. Sveriges Geologiska Undersökning, UppsalaGoogle Scholar
  38. Kathol B, Weihed P, Antal, Lundin A et al (2005) Regional geological and geophysical maps of the Skellefte District and surrounding areas. Sveriges Geologiska Undersökning, UppsalaGoogle Scholar
  39. Keays RR, Lightfoot PC (2010) Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits: evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Mineral Deposita 45:241–257CrossRefGoogle Scholar
  40. Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607CrossRefGoogle Scholar
  41. Kelley KA, Cottrell E (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet Sci Lett 329-330:109–121CrossRefGoogle Scholar
  42. Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wennerstrom M, Korhonen J. (2001) Geological map of the Fennoscandian Shield, scale 1:2 000 000. Geological surveys of Finland, Norway and Sweden and the North-West Department of Natural Resources of RussiaGoogle Scholar
  43. Labidi J, Cartigny P, Jackson MG (2015) Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope ‘mantle array’ in chemical geodynamics. Earth Planet Sci Lett 417:28–39CrossRefGoogle Scholar
  44. Lanari P, Vidal O, De Andrade V, Dubacq B, Lewin E, Grosch EG, Schwartz S (2014) XMapTools: a MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comput Geosci 62:227–240CrossRefGoogle Scholar
  45. Latypov RM (2003) The origin of basic-ultrabasic sills with S-, D-, and I-shaped compositional profiles by in situ crystallization of a single input of phenocryst-poor parental magma. J Petrol 44:1619–1656Google Scholar
  46. Lesher CM, Campbell IH (1993) Geochemical and fluid dynamic modeling of compositional variations in Archean komatiite-hosted nickel sulfide ores in Western Australia. Econ Geol 88:804–816CrossRefGoogle Scholar
  47. Li Y, Audétat A (2012) Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet Sci Lett 355-356:327–340CrossRefGoogle Scholar
  48. Li C, Maier WD, de Waal S (2001) Magmatic Ni-Cu versus PGE deposits: contrasting genetic controls and exploration implications. S Afr J Geol 104:309–318CrossRefGoogle Scholar
  49. Li C, Ripley EM, Naldrett AJ (2009) A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with the Siberian flood basalts. Econ Geol 104:291–301CrossRefGoogle Scholar
  50. Lightfoot PC, Keays RR (2005) Siderophile and chalcophile metal variations in flood basalts from the Siberian trap, Noril’sk region: implications for the origin of the Ni-Cu-PGE sulfide ores. Econ Geol 100:439–462CrossRefGoogle Scholar
  51. Longpré M-A, Stix J, Klügel A, Shimizu N (2017) Mantle to surface degassing of carbon- and sulphur-rich alkaline magma at El Hierro, Canary Islands. Earth Planet Sci Lett 460:268–280CrossRefGoogle Scholar
  52. Luhr JF (1990) Experimental phase relations of water- and sulfur-saturated arc magmas and the 1982 eruptions of El Chichón volcano. J Petrol 31:1071–1114CrossRefGoogle Scholar
  53. Luhr JF, Logan MV (2002) Sulfur isotope systematics of the 1982 El Chichón trachyandesite: an ion microprobe study. Geochim Cosmochim Acta 66:3303–3316CrossRefGoogle Scholar
  54. Lundberg B (1980) Aspects of the geology of the Skellefte field, northern Sweden. GFF J Geol Soc Sweden 102:156–166Google Scholar
  55. Martinsson E (1996) Geochemistry and petrogenesis of the Palaeoproterozoic, nickel-copper bearing Lainijaur intrusion, northern Sweden. GFF J Geol Soc Sweden 118:97–109Google Scholar
  56. Matzen AK, Baker MB, Beckett JR, Stolper EM (2011) Fe-Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J Petrol 52:1243–1263CrossRefGoogle Scholar
  57. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  58. Mckenzie D, O'nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091CrossRefGoogle Scholar
  59. Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51:603–626CrossRefGoogle Scholar
  60. Moussallam Y, Edmonds M, Scaillet B, Peters N, Gennaro E, Sides I, Oppenheimer C (2016) The impact of degassing on the oxidation state of basaltic magmas: a case study of Kïlauea volcano. Earth Planet Sci Lett 450:317–325CrossRefGoogle Scholar
  61. Mungall JE, Su S (2005) Interfacial tension between magmatic sulfide and silicate liquids: constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks. Earth Planet Sci Lett 234:135–149CrossRefGoogle Scholar
  62. Naldrett AJ (1992) A model for the Ni-Cu-PGE ores of the Noril'sk region and its application to other areas of flood basalt. Econ Geol 87:1945–1962CrossRefGoogle Scholar
  63. Naldrett AJ (2004) Magmatic sulfide deposits: geology, geochemistry and exploration. Springer, BerlinCrossRefGoogle Scholar
  64. Nash WM, Smythe DJ, Wood BJ (2019) Compositional and temperature effects on sulfur speciation and solubility in silicate melts. Earth Planet Sci Lett 507:187–198CrossRefGoogle Scholar
  65. O'Neill HSC, Mavrogenes JA (2002) The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400°C and 1 bar. J Petrol 43:1049–1087CrossRefGoogle Scholar
  66. Paulick H, Nordfeldt E, Mattson B (2012) Cu-Ni-Au mineralization in the Älgliden gabbro dike: results of the 2010/2011 drilling campaign. Boliden Exploration reportGoogle Scholar
  67. Peach C, Mathez E (1993) Sulfide melt-silicate melt distribution coefficients for nickel and iron and implications for the distribution of other chalcophile elements. Geochim. Cosmochim. Acta 57:3013-3021Google Scholar
  68. Peltonen P (1995) Magma-country rock interaction and the genesis of Ni-Cu deposits in the Vammala Nickel Belt, SW Finland. Mineral Petrol 52:1–24CrossRefGoogle Scholar
  69. Piña R, Gervilla F, Barnes S-J, Ortega L, Lunar R (2010) Platinum-group elements-bearing pyrite from the Aguablanca Ni-Cu sulphide deposit (SW Spain): a LA-ICP-MS study. Eur J Mineral 25:241–252CrossRefGoogle Scholar
  70. Plank T, Kelley KA, Zimmer MM, Hauri EH, Wallace PJ (2013) Why do mafic arc magmas contain ~4 wt% water on average? Earth Planet Sci Lett 364:168–179CrossRefGoogle Scholar
  71. Richards JP (2009) Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology 37:247–250CrossRefGoogle Scholar
  72. Richards JP (2015) The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos 233:27–45CrossRefGoogle Scholar
  73. Rickard DT, Zweifel H (1975) Genesis of Precambrian sulfide ores, Skellefte District, Sweden. Econ Geol 70:255–274CrossRefGoogle Scholar
  74. Ripley EM, Li C (2003) Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits. Econ Geol 98:635–641CrossRefGoogle Scholar
  75. Ripley EM, Li C (2013) Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis? Econ Geol 108:45–58CrossRefGoogle Scholar
  76. Robin-Popieul CCM, Arndt NT, Chauvel C, Byerly GR, Sobolev AV, Wilson A (2012) A new model for Barberton komatiites: deep critical melting with high melt retention. J Petrol 53:2191–2229CrossRefGoogle Scholar
  77. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds.) Treatise on geochemistry. Pergamon, Oxford, pp 1–64Google Scholar
  78. Thakurta J, Ripley EM, Li C (2008) Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska. Geochem Geophys Geosyst 9.  https://doi.org/10.1029/2008GC001982
  79. Tomkins AG, Rebryna KC, Weinberg RF, Schaefer BF (2012) Magmatic sulfide formation by reduction of oxidized arc basalt. J Petrol 53:1537–1567CrossRefGoogle Scholar
  80. Ueda A, Sakai H (1984) Sulfur isotope study of Quaternary volcanic rocks from the Japanese Islands Arc. Geochim Cosmochim Acta 48:1837–1848CrossRefGoogle Scholar
  81. Wallace PJ, Edmonds M (2011) The sulfur budget in magmas: evidence from melt inclusions, submarine glasses, and volcanic gas emissions. Rev Mineral Geochem 73:215–246CrossRefGoogle Scholar
  82. Weihed P (1992) Lithogeochemistry, metal and alteration zoning in the Proterozoic Tallberg porphyry-type deposit, northern Sweden. J Geochem Explor 42:301–325CrossRefGoogle Scholar
  83. Weihed P, Bergman J, Bergström U (1992) Métallogeny and tectonic evolution of the early proterozoic Skellefte district, northern Sweden. Precambrian Res 58:143–167CrossRefGoogle Scholar
  84. Weihed P, Fallick AE (1994) A stable isotope study of the Palaeoproterozoic Tallberg porphyry-type deposit, northern Sweden. Mineral Deposita 29:128–138CrossRefGoogle Scholar
  85. Wilson MR, Hamilton PJ, Fallick AE, Aftalion M, Michard A (1985) Granites and early Proterozoic crustal evolution in Sweden: evidence from Sm-Nd, U-Pb and O isotope systematics. Earth Planet Sci Lett 72:376–388CrossRefGoogle Scholar
  86. Wilson MR, Sehlstedt S, Claesson L-Ä, Smellie JA, Aftalion M, Hamilton PJ, Fallick AE (1987) Jörn: an early proterozoic intrusive complex in a volcanic-arc environment, north Sweden. Precambrian Res 36:201–225CrossRefGoogle Scholar
  87. Zanetti A, Tiepolo M, Oberti R, Vannucci R (2004) Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt. Lithos 75:39–54CrossRefGoogle Scholar
  88. Zelenski M, Kamenetsky VS, Mavrogenes JA, Gurenko AA, Danyushevsky LV (2018) Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): part I. Occurrence and compositions of sulfide melts. Chem Geol 478:102–111CrossRefGoogle Scholar
  89. Zettergren A (2013) Bastutjärn Ni-Cu-Co mineralization. Master dissertation, University of LuleåGoogle Scholar
  90. Zweifel H (1982) Ore deposits in the Skellefte field? Volcanic activity and depositional environment. GFF J Geol Soc Sweden 104:369Google Scholar
  91. Wei B, Wang CY, Arndt NT, Prichard HM, Fisher PC (2015) Textural relationship of sulfide ores, PGE, and Sr-Nd-Os isotope compositions of the Triassic Piaohechuan Ni-Cu sulfide deposit in NE China. Econ Geol 110:2041–2054CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ. Grenoble AlpesCNRS, IRD, IFSTTAR, ISTerreGrenobleFrance
  2. 2.Laboratoire de Géochimie des Isotopes Stables, Institut de Physique du Globe de ParisUniversité de Paris, Université Paris DiderotParisFrance

Personalised recommendations