Advertisement

Sequential evolution of Sn–Zn–In mineralization at the skarn-hosted Hämmerlein deposit, Erzgebirge, Germany, from fluid inclusions in ore and gangue minerals

  • Maximilian KorgesEmail author
  • Philipp Weis
  • Volker Lüders
  • Oscar Laurent
Article
  • 96 Downloads

Abstract

Skarn-hosted deposits can be important high-grade resources for a variety of metals, but Sn skarns are still of subordinate importance for global mining because of their complex mineralogy and evolution. As part of recent exploration efforts, the economic potential of the Sn–Zn–In mineralization at the Hämmerlein skarn-hosted deposit is currently being re-evaluated. The temporal and spatial evolution of the ore-forming hydrothermal system is still debated. We analyzed fluid inclusion assemblages (FIA) in ore and gangue minerals using conventional and infrared microthermometry and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We further estimated alteration temperatures with chlorite thermometry and compared the fluid inclusion (FI) record at Hämmerlein with a mineralized greisen sample of the nearby Eibenstock granite. Cassiterite in skarn forms the major mineralization at Hämmerlein during stage I and hosts FIs showing homogenization temperatures of up to 500 °C and salinities between 30 and 47 wt% NaCl eq. Cassiterite from schists and the additional greisen sample from the Eibenstock granite of the later stage II show lower homogenization temperatures (350–400 °C) and considerably lower salinities varying from 1.9 to 6 wt% NaCl eq. Despite the different homogenization temperatures and salinities, the chemical compositions of FIs hosted in both generations of cassiterite show that both (cassiterite in skarn and in schist and greisen) are similar, which points to a common source. The gangue minerals mainly contain low-temperature FIA (max. 330 °C and 2–9 wt% NaCl eq.) and are interpreted to form during further cooling of the system in stage III. Intergrown chlorite has compositions indicating similar temperatures of around 260 °C and is thus also related to stage III. FIA in sphalerite homogenize around 200 °C with salinities between 2 and 6.7 wt% NaCl eq. and show decreasing trace element contents despite having the same salinity range as the gangue minerals, indicating dilution of the ore-fluid during stage IV as a possible precipitation mechanism. Stage I inclusions are solely hosted in cassiterite from skarn, which shows the importance of fluid inclusion analyses in ore minerals, and record remarkable high mineralization temperatures, exceeding the typically temperature range reported in other studies by at least 100 °C. Our results suggest that this main ore stage is related to the early expulsion of a high-salinity brine phase from an underlying magmatic intrusion at depths greater than 3 km, which likely is a relatively short-lived event within the evolution of the hydrothermal system.

Keywords

Fluid inclusions LA-ICP-MS Skarn-hosted ore deposits Tin Zinc Indium Hämmerlein IR-microthermometry Erzgebirge 

Notes

Acknowledgements

We thank Marco Roscher from Saxore Bergbau GmbH for the logical support and allowance of sampling. We further thank Franziska Wilke for the help during EPMA analysis. We also thank Rolf Romer and Marie Lefebvre for the fruitful discussions. We further thank the reviewers Rainer Thomas and Jens Gutzmer for the insightful comments and suggestions that helped to improve the manuscript.

Funding

The project was funded by the German Federal Ministry of Education and Research (BMBF) within the project GRAMME (033R149) of the r4 funding initiative.

Supplementary material

126_2019_905_MOESM1_ESM.xlsx (259 kb)
ESM 1 (XLSX 258 kb)
126_2019_905_MOESM2_ESM.xlsx (17 kb)
ESM 2 (XLSX 17 kb)

References

  1. Anglo Saxony Mining (2015) Westerzgebirge project Hämmerlein-Tellerhäuser: long section through adit. http://www.anglosaxony.com/tellerhaeuser-project. Accessed 20 June 2019
  2. Audétat A, Günther D, Heinrich CA (2000) Causes for large-scale metal zonation around mineralized plutons: fluid inclusion LA-ICP-MS evidence from the Mole granite, Australia. Econ Geol 95:1563–1581CrossRefGoogle Scholar
  3. Bankwitz P, Bankwitz E (2004) The relationship of tilt and twist of fringe cracks in granite plutons. Geol Soc Lond, Spec Publ 231:183–208CrossRefGoogle Scholar
  4. Bauer ME, Seifert T, Burisch M, Krause J, Richter N, Gutzmer J (2019) Indium-bearing sulfides from the Hämmerlein skarn deposit, Erzgebirge, Germany: evidence for late-stage diffusion of indium into sphalerite. Mineral Deposita 54:175–192CrossRefGoogle Scholar
  5. Baumann L, Werner C-D (1968) Die Gangmineralisationen des Harzes und ihre Analogien zum Erzgebirge und zu Thüringen. Ber Dtsch Ges Geol Wiss 13:525–548Google Scholar
  6. Baumann L, Kuschka E, Seifert T (2000) Lagerstätten des Erzgebirges. Enke im Thieme-VerlagGoogle Scholar
  7. Behr H-J, Gerler J (1987) Inclusions of sedimentary brines in post-Variscan mineralizations in the Federal Republic of Germany—a study by neutron activation analysis. Chem Geol 61:65–77CrossRefGoogle Scholar
  8. Behr H-J, Horn E, Frentzel-Beyme K, Reutel C (1987) Fluid inclusion characteristics of the Variscan and post-Variscan mineralizing fluids in the Federal Republic of Germany. Chem Geol 61:273–285CrossRefGoogle Scholar
  9. Bodnar R (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57:683–684CrossRefGoogle Scholar
  10. Bodnar RJ (2003) Introduction to fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineralogical Association of Canada, Vancouver, pp 1–8Google Scholar
  11. Breiter K (1993) The Nejdek pluton—discussion of granite evolution and Sn-W mineralization. Z Geol Wiss 21:2–36Google Scholar
  12. Breiter K (2012) Nearly contemporaneous evolution of the A-and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos 151:105–121CrossRefGoogle Scholar
  13. Buchmann M, Schach E, Tolosana-Delgado R, Leißner T, Astoveza J, Kern M, Möckel R, Ebert D, Rudolph M, van den Boogaart K (2018) Evaluation of magnetic separation efficiency on a cassiterite-bearing skarn ore by means of integrative SEM-based image and XRF–XRD data analysis. Minerals 8:390CrossRefGoogle Scholar
  14. Butler B (1978) Tin-rich garnet, pyroxene, and spinel from a slag. Mineral Mag 42:487–492CrossRefGoogle Scholar
  15. Casanova V, Kouzmanov K, Audétat A, Wälle M, Ubrig N, Ortelli M, Fontboté L (2018) Fluid inclusion studies in opaque ore minerals: II. A comparative study of syngenetic synthetic fluid inclusions hosted in quartz and opaque minerals. Econ Geol 113:1861–1883CrossRefGoogle Scholar
  16. Cathelineau M (1988) Cation site occupancy in chlorites and illites as function of temperature. Clay Miner 23:471–485CrossRefGoogle Scholar
  17. Cline JS, Bodnar RJ (1991) Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J Geophys Res Solid Earth 96:8113–8126CrossRefGoogle Scholar
  18. Collins P (1981) The geology and genesis of the Cleveland tin deposit, western Tasmania; fluid inclusion and stable isotope studies. Econ Geol 76:365–392CrossRefGoogle Scholar
  19. De Caritat P, Hutcheon I, Walshe J (1993) Chlorite geothermometry: a review. Clay Clay Miner 41:219–239CrossRefGoogle Scholar
  20. Driesner T (2007) The system H2O–NaCl. Part II: correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 °C, 1 to 5000 bar, and 0 to 1 XNaCl. Geochim Cosmochim Acta 71:4902–4919CrossRefGoogle Scholar
  21. Driesner T, Heinrich CA (2007) The system H2O–NaCl. Part I: correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000°C, 0 to 5000bar, and 0 to 1 XNaCl. Geochim Cosmochim Acta 71:4880–4901CrossRefGoogle Scholar
  22. Eadington P (1983) A fluid inclusion investigation of ore formation in a tin-mineralized granite, New England, New South Wales. Econ Geol 78:1204–1221CrossRefGoogle Scholar
  23. Einaudi MT, Burt DM (1982) Introduction; terminology, classification, and composition of skarn deposits. Econ Geol 77:745–754CrossRefGoogle Scholar
  24. Fekete S, Weis P, Driesner T, Bouvier A-S, Baumgartner L, Heinrich CA (2016) Contrasting hydrological processes of meteoric water incursion during magmatic–hydrothermal ore deposition: an oxygen isotope study by ion microprobe. Earth Planet Sci Lett 451:263–271CrossRefGoogle Scholar
  25. Förster H-J (2012) Late–Variscan felsic magmatism in the western Erzgebirge–Vogtland. In: Romer RL, Förster H-J, Kroner U, Müller A, Rößler R, Rötzler J, Seltmann R, Wenzel T (eds) Granites of the Erzgebirge—relation of magmatism to the metamorphic and tectonic evolution of the Variscan Orogen Scientific Technical Report 12/15. GFZ German Research Centre for GeosciencesGoogle Scholar
  26. Förster HJ, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia–from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 287–308Google Scholar
  27. Förster HJ, Tischendorf G, Seltmann R, Gottesmann B (1998) Die variszischen Granite des Erzgebirges: neue Aspekte aus stofflicher Sicht. Z Geol Wiss 26:31–60Google Scholar
  28. Förster HJ, Tischendorf G, Trumbull R, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645CrossRefGoogle Scholar
  29. Fu M, Kwak T, Mernagh T (1993) Fluid inclusion studies of zoning in the Dachang tin-polymetallic ore field, People’s Republic of China. Econ Geol 88:283–300CrossRefGoogle Scholar
  30. Gagnon JE, Samson IM, Fryer BJ (2003) LA-ICP-MS analysis of fluid inclusions. In: Samson I, Anderson A, Marshall DD (eds) Fluid inclusions analysis and interpretation. Mineral Association of Canada, Vancouver, pp 391–323Google Scholar
  31. Goldstein RH (2003) Petrographic analysis of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineralogical Association of Canada, Vancouver, pp 9–53Google Scholar
  32. Guillong M, Heinrich CA (2007) Sensitivity enhancement in laser ablation ICP-MS using small amounts of hydrogen in the carrier gas. J Anal At Spectrom 22:1488–1494CrossRefGoogle Scholar
  33. Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BW (2008) Appendix A6: SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course 40:328–333Google Scholar
  34. Heinrich CA (1990) The chemistry of hydrothermal tin(–tungsten) ore deposition. Econ Geol 85:457–481CrossRefGoogle Scholar
  35. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429CrossRefGoogle Scholar
  36. Johannes W (1984) Beginning of melting in the granite system Qz-Or-Ab-An-H 2 O. Contrib Mineral Petrol 86:264–273CrossRefGoogle Scholar
  37. Jowett EC (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer. GAC/MAC/SEG Joint Annual Meeting (Toronto, May 27–29, 1991), Program with Abstracts 16, A62Google Scholar
  38. Kelly WC, Turneaure F (1970) Mineralogy, paragenesis and geothermometry of the tin and tungsten deposits of the eastern Andes, Bolivia. Econ Geol 65:609–680CrossRefGoogle Scholar
  39. Kempe U, Bombach K, Matukov D, Schlothauer T, Hutschenreuter J, Wolf D, Sergeev S (2004) Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration. Mineral Deposita 39:646–669CrossRefGoogle Scholar
  40. Kern M, Möckel R, Krause J, Teichmann J, Gutzmer J (2018) Calculating the deportment of a fine-grained and compositionally complex Sn skarn with a modified approach for automated mineralogy. Miner Eng 116:213–225CrossRefGoogle Scholar
  41. Kern M, Kästner J, Tolosana-Delgado R, Jeske T, Gutzmer J (2019) The inherent link between ore formation and geometallurgy as documented by complex tin mineralization at the Hämmerlein deposit (Erzgebirge, Germany). Mineral Deposita 54:683–698CrossRefGoogle Scholar
  42. Korges M, Weis P, Lüders V, Laurent O (2018) Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology 46:75–78CrossRefGoogle Scholar
  43. Kouzmanov K, Pettke T, Heinrich CA (2010) Direct analysis of ore-precipitating fluids: combined IR microscopy and LA-ICP-MS study of fluid inclusions in opaque ore minerals. Econ Geol 105:351–373CrossRefGoogle Scholar
  44. Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian zone-heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust. Spec Pap Geol Soc Am 423:153–172Google Scholar
  45. Kwak T (1986) Fluid inclusions in skarns (carbonate replacement deposits). J Metamorph Geol 4:363–384CrossRefGoogle Scholar
  46. Kwak TA (1987) W-Sn skarn deposits and related metamorphic skarns and granitoids. ElsevierGoogle Scholar
  47. Kwak T, Askins P (1981) Geology and genesis of the F-Sn-W (-Be-Zn) skarn (wrigglite) at Moina, Tasmania. Econ Geol 76:439–467CrossRefGoogle Scholar
  48. Landesamt für Umwelt Landschaft und Geologie (2018) Geologie Präquartär, 1:50000. Published onlineGoogle Scholar
  49. Layne GD, Spooner E (1991) The JC tin skarn deposit, southern Yukon Territory; I, geology, paragenesis, and fluid inclusion microthermometry. Econ Geol 86:29–47CrossRefGoogle Scholar
  50. Lefebvre MG, Romer RL, Glodny J, Kroner U, Roscher M (2019) The Hämmerlein skarn-hosted polymetallic deposit and the Eibenstock granite associated greisen, western Erzgebirge, Germany: two phases of mineralization—two Sn sources. Mineral Deposita 54:193–216CrossRefGoogle Scholar
  51. Lehmann B (2006) Metallogeny of tin. SpringerGoogle Scholar
  52. Leonhardt D, Geißler E, Fritzsche H (1999) Geologische Karte des Freistaates Sachsen 1:25000. Blatt 5543 Oberwiesenthal. Sächsisches Landesamt für Umwelt und Geologie Abteilung GeologieGoogle Scholar
  53. Leonhardt D, Geißler E, Engelhardt-Sobe A, Baumgart G (2004) Geologische Karte des Freistaates Sachsen 1:25000. Blatt 5542 Johanngeorgenstadt. Sächsisches Landesamt für Umwelt und Geologie Abteilung GeologieGoogle Scholar
  54. Leonhardt D, Geißler E, Engelhardt A, Baumgart G (2010) Geologische Karte des Freistaates Sachsen 1:25000. Blatt 5541 Eibenstock. Sächsisches Landesamt für Umwelt und Geologie Abteilung GeologieGoogle Scholar
  55. Lu H-Z, Liu Y, Wang C, Xu Y, Li H (2003) Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Econ Geol 98:955–974CrossRefGoogle Scholar
  56. Lüders V (1996) Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite); metallogenic implications. Econ Geol 91:1462–1468CrossRefGoogle Scholar
  57. Lüders V (2017) Contribution of infrared microscopy to studies of fluid inclusions hosted in some opaque ore minerals: possibilities, limitations, and perspectives. Mineral Deposita 52:663–673CrossRefGoogle Scholar
  58. Malyshev B, Mironova O, Naumov V, Savel'eva N, Salazkin A, Volosov A (1997) Fluids of the Hemmerlein skarn-Greisen tin deposit, Erzgebirge, Germany. Geochem Int 35:146–154Google Scholar
  59. Mei W, Lü X, Cao X, Liu Z, Zhao Y, Ai Z, Tang R, Abfaua MM (2015) Ore genesis and hydrothermal evolution of the Huanggang skarn iron–tin polymetallic deposit, southern Great Xing’an Range: evidence from fluid inclusions and isotope analyses. Ore Geol Rev 64:239–252CrossRefGoogle Scholar
  60. Meinert LD (1992) Skarns and skarn deposits. Geosci Can 19:147–156Google Scholar
  61. Meinert LD (2005) World skarn deposits. Econ Geol 100th Aniv Vol:299–336Google Scholar
  62. Misra K (2012) Understanding mineral deposits. Springer Science & Business MediaGoogle Scholar
  63. Monecke T, Petersen S, Hannington MD (2014) Constraints on water depth of massive sulfide formation: evidence from modern seafloor hydrothermal systems in arc-related settings. Econ Geol 109:2079–2101CrossRefGoogle Scholar
  64. Mulligan R, Jambor J (1968) Tin-bearing silicates from skarn in the Cassiar district, northern British Columbia. Can Mineral 9:358–370Google Scholar
  65. Naumov V, Dorofeev V, Mironova O (2011) Physicochemical parameters of the formation of hydrothermal deposits: a fluid inclusion study. I. Tin and tungsten deposits. Geochem Int 49:1002–1021CrossRefGoogle Scholar
  66. Roedder E (1984) Fluid inclusions. Mineralogical Society of AmericaGoogle Scholar
  67. Romer RL, Kroner U (2016) Phanerozoic tin and tungsten mineralization—tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res 31:60–95CrossRefGoogle Scholar
  68. Rötzler K, Plessen B (2010) The Erzgebirge: a pile of ultrahigh-to low-pressure nappes of Early Palaeozoic rocks and their Cadomian basement. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 253–270Google Scholar
  69. Schlöglova K, Wälle M, Heinrich CA (2017) LA-ICP-MS analysis of fluid inclusions: contamination effects challenging micro-analysis of elements close to their detection limit. J Anal At Spectrom 32:1052–1063CrossRefGoogle Scholar
  70. Schmidt C (2018) Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn (IV) species. Geochim Cosmochim Acta 220:499–511CrossRefGoogle Scholar
  71. Schuppan W, Hiller A (2012) Die Komplexlagerstätten Tellerhäuser und Hämmerlein. FreibergGoogle Scholar
  72. Sebastian U (2013) Die Geologie des Erzgebirges. Springer SpektrumGoogle Scholar
  73. Seo JH, Guillong M, Aerts M, Zajacz Z, Heinrich CA (2011) Microanalysis of S, Cl, and Br in fluid inclusions by LA–ICP-MS. Chem Geol 284:35–44Google Scholar
  74. Shapenko VV, Smidel P (1991) Sn and W mineralization in skarn-greisen deposits at the northern margin of the Bohemian massif. Geokhimiya 5:724–732Google Scholar
  75. Stemprok M (1987) Greienization (a review). Geol Rundsch 76:169–175CrossRefGoogle Scholar
  76. Sugaki A, Ueno H, Shimada N, Kusachi I, Kitakaze A, Hayashi K, Kojima S, Sanjines O, Sachnes A, Veralde O (1984) Geological study on the polymetallic ore deposits in the Quechisla district, Bolivia. Sci Rep Tohoku Univ 3:35–129Google Scholar
  77. Sugaki A, Kojima S, Shimada N (1988) Fluid inclusion studies of the polymetallic hydrothermal ore deposits in Bolivia. Mineral Deposita 23:9–15CrossRefGoogle Scholar
  78. Thomas R (1982) Ergebnisse der thermobarogeochemischen Untersuchungen an Flüssigkeitseinschlüssen in Mineralen der postmagmatischen Zinn-Wolfram-Mineralisation des Erzgebirges. Freiberger Forschungsheft R C C 370:1–85Google Scholar
  79. Thomas R, Baumann L (1980) Ergebnisse von thermometrischen und kryometrischen Untersuchungen an Kassiteriten des Erzgebirges. Z Geol Wiss Berlin 10:1281–1299Google Scholar
  80. Thomas R, Klemm W (1997) Microthermometric study of silicate melt inclusions in Variscan granites from SE Germany: volatile contents and entrapment conditions. J Petrol 38:1753–1765CrossRefGoogle Scholar
  81. Tichomirowa M, Hoffmann M, Schaltegger U, Sergeev S, von Quadt A, Whiteouse M (2016) The older and younger granites from the western Erzgebirge—comparison of different zircon dating methods. Freib Online Geosci 46:36–38Google Scholar
  82. Treliver Minerals Limited (2015) Press Release Tellerhäuser Project Resource Statement. pp 29Google Scholar
  83. Watanabe K (1987) Inclusions in flux-grown crystals of corundum. Cryst Res Technol 22:345–355CrossRefGoogle Scholar
  84. Yardley BW (2005) 100th anniversary special paper: metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100:613–632CrossRefGoogle Scholar
  85. Zimák J (1999) Application of chlorite compositional geothermometres to hydrothermal veins in the Variscan flysch sequences of the Nízký Jeseník Upland, to Alpine-type veins in the Sobotín region, and to the paragenesis with “strigovite” from Žulová massif and Strzegom-Sobótka massif. AUPO, Fac Rer Nat, Geologica 36:69–74Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Institute of Geochemistry and PetrologyETH Zurich8092 ZurichSwitzerland

Personalised recommendations