Contemporaneous formation of vein-hosted and stratabound gold mineralization at the world-class Dead Bullock Soak mining camp, Australia

  • Laura PetrellaEmail author
  • Nicolas Thébaud
  • Crystal LaFlamme
  • John Miller
  • Christopher McFarlane
  • Sandra Occhipinti
  • Stephen Turner
  • Stuart Perazzo


We investigate the relative and absolute timing associated with the formation of the world-class Dead Bullock Soak (DBS) mining camp. The study area is situated in the Paleoproterozoic Granites-Tanami Gold Province in the Northern Territory, Australia, and consists of five orogenic gold deposits, including the Callie deposit with a resource of 14.2 Moz Au. At DBS, the ore is hosted in Paleoproterozoic metasedimentary rocks and consists of two contrasting styles of mineralization, vein-hosted and stratabound. The vein-hosted mineralization consists of visible gold in quartz, chlorite, carbonate veins preferentially hosted in finely laminated, decarbonized siltstones. In contrast, the stratabound mineralization consists of free gold associated with arsenopyrite concentrated in bedding-parallel sulfide-rich layers, hosted in iron-rich siltstones. This study combines structural and petrographic analysis with detailed U–Pb geochronological data on hydrothermal and metamorphic xenotime and monazite to constrain the relative and isotopic timing of ore formation in the DBS mining camp. The results of this study show that both mineralization styles developed within a series of NE-trending and SE-dipping vein corridors or structural pathways, associated with the development of axial planar fabric related to small-scale F2 folds. U–Pb geochronology shows that both mineralization styles formed at c. 1805 Ma, approximately 35 m.y. after peak metamorphism at c. 1840 Ma. A post-mineralization hydrothermal event is locally remobilizing gold and yields an age of c. 1790 Ma, which provides a minimum age for gold deposition.


Callie deposit Granites-Tanami Gold Province Orogenic gold U–Pb geochronology Epigenetic gold Xenotime Monazite 



This study is part of a PhD project started in March 2016 at the Centre for Exploration Targeting at UWA. Matthew Baggott, Shaun Schmeider, David Haddow, Philippa Sivwright, Alan Hawkins, Leon Griesel, Harvey Jones, Natalie Nguyen, Sam Deed, Rudy Baker, Andy Crawford, Matthew McPhail, and all Newmont Tanami geologists are thanked for providing site access, support and insightful discussions. The authors acknowledge David Maidment for insightful reviews of the manuscript. Rolf L. Romer, Sebastien Meffre, and Leon Bagas are thanked for their comprehensive appraisal of the study and constructive reviews. The authors acknowledge the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy, Characterization and Analysis (UWA), a facility funded by the University, State and Commonwealth Governments. This paper was supported by the Hammond and Nisbet fellowship at UWA.

Funding information

This work is financially supported by the Newmont Mining Corporation, the Australian Postgraduate Award, and the Mineral Council of Australia.

Supplementary material

126_2019_902_MOESM1_ESM.pdf (788 kb)
ESM 1 (PDF 787 kb)
126_2019_902_MOESM2_ESM.xlsx (130 kb)
ESM 2 (XLSX 129 kb)


  1. Ahmad M, Wygralak AS, Ferenczi PA (1999) Gold deposits of the Northern Territory. Northern Territory geological survey.Google Scholar
  2. Ahmad M, Scrimgeour I, Close D, Wygralak A, Edgoose C, Donnellan N, Munson T, Khan M, Hollis J, Glass L, Vandenberg L, Dunster J, Kruse P (2013) Geology and mineral resources of the Northern Territory special publication 5. NTGS, Northern Territory geological survey.Google Scholar
  3. Bagas L, Huston DL, Anderson J, Mernagh TP (2007) Paleoproterozoic gold deposits in the Bald Hill and Coyote areas, Western Tanami, Western Australia. Mineral Deposita 42:127–144. CrossRefGoogle Scholar
  4. Bagas L, Bierlein FP, English L, Anderson JAC, Maidment D, Huston DL (2008) An example of a Palaeoproterozoic back-arc basin: petrology and geochemistry of the ca. 1864 Ma Stubbins Formation as an aid towards an improved understanding of the Granites–Tanami Orogen, Western Australia. Precambrian Res 166:168–184. CrossRefGoogle Scholar
  5. Bagas L, Anderson JAC, Bierlein FP (2009) Palaeoproterozoic evolution of the Killi Killi Formation and orogenic gold mineralization in the Granites–Tanami Orogen, Western Australia. Ore Geol Rev 35:47–67. CrossRefGoogle Scholar
  6. Bagas L, Bierlein FP, Anderson JAC, Maas R (2010) Collision-related granitic magmatism in the Granites–Tanami Orogen, Western Australia. Precambrian Res 177:212–226. CrossRefGoogle Scholar
  7. Bagas L, Boucher R, Li B, Miller J, Hill P, Depauw G, Pascoe J, Eggers B (2014) Paleoproterozoic stratigraphy and gold mineralisation in the Granites-Tanami Orogen, North Australian Craton. Aust J Earth Sci 61:89–111. CrossRefGoogle Scholar
  8. Bateman R, Hagemann S (2004) Gold mineralisation throughout about 45 Ma of Archaean orogenesis: protracted flux of gold in the Golden Mile, Yilgarn craton, Western Australia. Mineral Deposita 39:536–559. CrossRefGoogle Scholar
  9. Bateman R, Jones S (2015) Discussion: the timing of gold mineralization across the eastern Yilgarn craton using U–Pb geochronology of hydrothermal phosphate minerals. Mineral Deposita 50:885–888. CrossRefGoogle Scholar
  10. Bateman R, Ayer JA, Dube B (2008) The Timmins-Porcupine gold camp, Ontario: anatomy of an Archean greenstone belt and ontogeny of gold mineralization. Econ Geol 103:1285–1308. CrossRefGoogle Scholar
  11. Blake DH, Hodgson IM, Smith P (1975) Geology of the Birrindudu and Tanami 1:250 0000 sheet areas, Northern Territory. Bureau of Mineral Resources, Australia, CanberraGoogle Scholar
  12. Blake DH, Hodgson IM, Muhling PC (1979) Geology of the Granites-Tanami region, Northern Territory and Western Australia. Australian Government Publishing Services.Google Scholar
  13. Carpenter RL, Duke NA, Sandeman HA, Stern R (2005) Relative and absolute timing of gold mineralization along the Meliadine Trend, Nunavut, Canada: evidence for Paleoproterozoic gold hosted in an Archean greenstone belt. Econ Geol 100:567–576. Google Scholar
  14. Crispe A, Vandenberg L (2004) Northern Tanami: findings from reconnaissance mapping 2003 annual geoscience exploration seminar (AGES) record of abstracts, Northern Territory geological survey record.Google Scholar
  15. Crispe AJ, Vandenberg LC, Scrimgeour IR (2007) Geological framework of the Archean and Paleoproterozoic Tanami Region, Northern Territory. Mineral Deposita 42:3–26. CrossRefGoogle Scholar
  16. Cross AJ, Crispe AJ (2007) SHRIMP U–Pb analyses of detrital zircon: a window to understanding the Paleoproterozoic development of the Tanami Region, northern Australia. Mineral Deposita 42:27–50. CrossRefGoogle Scholar
  17. Cross A, Fletcher I, Crispe A, Huston D, Williams N (2005) New constraints on the timing of deposition and mineralisation in the Tanami Group annual geoscience exploration seminar (AGES). pp 2005–2001.Google Scholar
  18. Dubé B, Mercier-Langevin, P., Castonguay, S., McNicoll, V.J., Bleeker, W., Lawley, C.J.M., De Souza, S., Jackson, S.E., Dupuis, C., Gao, J.-F., Bécu, V., Pilote, P., Goutier, J., Beakhouse, G.P., Yergeau, D., Oswald, W., Janvier, V., Fontaine, A., Pelletier, M., Beauchamp, A.-M., Katz, L.R., Kontak, D.J., Tóth, Z., Lafrance, B., Gourcerol, B., Thurston, P.C., Creaser, R.A., Enkin, R.J., El Goumi, N., Grunsky, E.C., Schneider, D.A., Kelly, C.J., and Lauzière, K. (2015) Precambrian lode gold deposits — a summary of TGI-4 contributions to the understanding of lode gold deposits, with an emphasis on implications for exploration in: Dubé BaM-L, P. (ed) targeted geoscience initiative 4: contributions to the understanding of Precambrian lode gold deposits and implications for exploration. Geological survey of Canada, pp 1–24.Google Scholar
  19. Fougerouse D, Micklethwaite S, Ulrich S, Miller J, Godel B, Adams DT, McCuaig TC (2017) Evidence for two stages of mineralization in West Africa’s largest gold deposit: Obuasi, Ghana. Econ Geol 112:3–22. CrossRefGoogle Scholar
  20. Fraser GL, Bagas L, Huston DL (2012) 40Ar/39Ar evidence for the timing of Paleoproterozoic gold mineralisation at the Sandpiper Deposit, Tanami region, northern Australia. Aust J Earth Sci 59:399–409. CrossRefGoogle Scholar
  21. Godefroy-Rodríguez M, Hagemann S, LaFlamme C, Fiorentini M (2018) The multiple sulfur isotope architecture of the Golden Mile and Mount Charlotte deposits, Western Australia. Mineral Deposita:1–26Google Scholar
  22. Goldfarb RJ, Groves DI (2015) Orogenic gold: common or evolving fluid and metal sources through time. Lithos 233:2–26CrossRefGoogle Scholar
  23. Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18:1–75.
  24. Goldfarb RJ, Baker T, Dube B, Groves DI, Hart CJ, Gosselin P (2005) Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology 100th anniversary volume 40.Google Scholar
  25. Groves D (1993) The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineral Deposita 28:366–374CrossRefGoogle Scholar
  26. Groves DI, Phillips GN, Ho SE, Henderson CA, Clark ME, Woad GM (1984) Controls on distribution of Archaean hydrothermal gold deposits in Western Australia gold. pp 689–712.Google Scholar
  27. Groves DI, Goldfarb RJ, Robert F, Hart CJR (2003) Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Econ Geol 98:1–29Google Scholar
  28. Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P, Bowring JF, Condon DJ, Schoene B (2016) Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology - uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res 40:311–332. CrossRefGoogle Scholar
  29. Huston DL, Vandenberg L, Wygralak AS, Mernagh TP, Bagas L, Crispe A, Lambeck A, Cross A, Fraser G, Williams N, Worden K, Meixner T, Goleby B, Jones L, Lyons P, Maidment D (2007) Lode–gold mineralization in the Tanami region, northern Australia. Mineral Deposita 42:175–204. CrossRefGoogle Scholar
  30. Iaccheri ML (2017) Paleoproterozoic magmatic history of the southern margin of the North Australian Craton: implications for local crustal architecture and evolution of the continental crust school of earth and environment. University of Western Australia, pp 517.Google Scholar
  31. Joly A, McCuaig TC, Bagas L (2010) The importance of early crustal architecture for subsequent basin-forming, magmatic and fluid flow events. The Granites-Tanami Orogen example. Precambrian Res 182:15–29. CrossRefGoogle Scholar
  32. Kolb J, Dziggel A, Bagas L (2015) Hypozonal lode gold deposits: a genetic concept based on a review of the New Consort, Renco, Hutti, Hira Buddini, Navachab, Nevoria and The Granites deposits. Precambrian Res 262:20–44. CrossRefGoogle Scholar
  33. Lambeck A, Huston D, Maidment D, Southgate P (2008) Sedimentary geochemistry, geochronology and sequence stratigraphy as tools to typecast stratigraphic units and constrain basin evolution in the gold mineralised Palaeoproterozoic Tanami Region, Northern Australia. Precambrian Res 166:185–203. CrossRefGoogle Scholar
  34. Lambeck A, Huston D, Barovich K (2010) Typecasting prospective Au-bearing sedimentary lithologies using sedimentary geochemistry and Nd isotopes in poorly exposed Proterozoic basins of the Tanami region, Northern Australia. Mineral Deposita 45:497–515CrossRefGoogle Scholar
  35. Lawley CJM, Dubé B, Mercier-Langevin P, Kjarsgaard B, Knight R, Vaillancourt D (2015) Defining and mapping hydrothermal footprints at the BIF-hosted Meliadine gold district, Nunavut, Canada. J Geochem Explor 155:33–55CrossRefGoogle Scholar
  36. Le Mignot E, Reisberg L, Andre-Mayer AS, Bourassa Y, Fontaine A, Miller J (2017) Re-Os geochronological evidence for multiple Paleoproterozoic gold events at the scale of the West African craton. Econ Geol 112:145–168CrossRefGoogle Scholar
  37. Li B (2014) Tectonic evolution and gold mineralisation of the Granites-Tanami orogen, North Australian Craton Centre for Exploration Targeting, School of Earth and Environment. The University of Western Australia, pp 215.Google Scholar
  38. Li B, Bagas L, Gallardo LA, Said N, Diwu C, McCuaig TC (2013) Back-arc and post-collisional volcanism in the Palaeoproterozoic Granites-Tanami Orogen, Australia. Precambrian Res 224:570–587. CrossRefGoogle Scholar
  39. Li B, Bagas L, Jourdan F (2014) Tectono-thermal evolution of the Palaeoproterozoic Granites–Tanami Orogen, North Australian Craton: implications from hornblende and biotite 40 Ar/39 Ar geochronology. Lithos 206:262–276CrossRefGoogle Scholar
  40. Ludwig KR (2003) User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. [Kenneth R. Ludwig?], Berkeley CA.Google Scholar
  41. McFarlane CRM, Luo Y (2012) U-Pb geochronology using 193 nm excimer LA-ICP-MS optimized for in-situ accessory mineral dating in thin sections. Geosci Can 39(3)Google Scholar
  42. McNaughton NJ, Rasmussen B (2017) Geochemical characterisation of xenotime formation environments using U-Th. Chem GeolGoogle Scholar
  43. Meffre S, Large RR, Steadman JA, Gregory DD, Stepanov AS, Kamenetsky VS, Ehrig K, Scott RJ (2016) Multi-stage enrichment processes for large gold-bearing ore deposits. Ore Geol Rev 76:268–279. CrossRefGoogle Scholar
  44. Miller J (2010) Structural study of the Callie deposit, Tanami region, N.T the University of Western Australia, Centre for Exploration Targeting, pp 118.Google Scholar
  45. Occhipinti SA, Metelka V, Lindsay MD, Hollis JA, Aitken ARA, Tyler IM, Miller JM, McCuaig TC (2016) Multicommodity mineral systems analysis highlighting mineral prospectivity in the Halls Creek Orogen. Ore Geol Rev 72:86–113. CrossRefGoogle Scholar
  46. Pendergast J (2011) Tanami operations, Callie mine: discovery of the Auron orebody, a +2Moz discovery in a “mature” goldfield. NewGenGold, Perth, p 9Google Scholar
  47. Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand Geoanal Res 36:247–270. CrossRefGoogle Scholar
  48. Phillips GN, Groves DI, Martyn JE (1984) An epigenetic origin for Archean banded iron-formation-hosted gold deposits. Econ Geol 79:162–171. CrossRefGoogle Scholar
  49. Pirajno F, Bagas L (2008) A review of Australia’s Proterozoic mineral systems and genetic models. Precambrian Res 166:54–80. CrossRefGoogle Scholar
  50. Rasmussen B, Sheppard S, Fletcher IR (2006) Testing ore deposit models using in situ U-Pb geochronology of hydrothermal monazite: Paleoproterozoic gold mineralization in northern Australia. Geology 34:77–80. CrossRefGoogle Scholar
  51. Rasmussen B, Fletcher IR, Muhling JR (2011) Response of xenotime to prograde metamorphism. Contrib Mineral Petrol 162:1259–1277. CrossRefGoogle Scholar
  52. Robert F, Poulsen KH (2001) Vein formation and deformation in greenstone gold deposits. Rev Econ Geol 14:111–155Google Scholar
  53. Robert F, Poulsen KH, Cassidy KF, Hodgson CJ (2005) Gold metallogeny of the superior and Yilgarn cratons. Econ Geol 100:1001–1033Google Scholar
  54. Robert F, Brommecker R, Bourne BT, Dobak PJ, McEwan CJ, Rowe RR, Zhou X (2007) Models and exploration methods for major gold deposit types proceedings of exploration. pp 691–711.Google Scholar
  55. Salier BP, Groves DI, McNaughton NJ, Fletcher IR (2005) Geochronological and stable isotope evidence for widespread orogenic gold mineralization from a deep-seated fluid source at ca 2.65 Ga in the Laverton gold province,Western Australia. Econ Geol 100:1363–1388. CrossRefGoogle Scholar
  56. Schmeider S, Stuart P, Griesel L, Robinson C (2018) Newmont Tanami Operations: multiple new discoveries supporting transformational growth in a mature mining camp In: Survey NG (ed) AGES 2018. NT Geological Survey, Alice Springs.Google Scholar
  57. Smith M, Lovett D, Pring P, Sando B (1998) Dead Bullock Soak gold deposits. In: Berkman DA, Mackenzie DH (eds) Geology of Australian and Papua new Guinean mineral deposits. Australasian Institute of Mining and MetallurgyGoogle Scholar
  58. Stern RA, Rayner NM (2003) Ages of several xenotime megacrysts by ID-TIMS: potential reference materials for ion microprobe U-Pb geochronology. Natural Resources Canada, Geological Survey of Canada.Google Scholar
  59. Thébaud N, Sugiono D, LaFlamme C, Miller J, Fisher L, Voute F, Tessalina S, Sonntag I, Fiorentini M (2018) Protracted and polyphased gold mineralisation in the Agnew District (Yilgarn Craton, Western Australia). Precambrian Res 310:291–304. CrossRefGoogle Scholar
  60. Vandenberg LC, Hendrickx MA, Crispe AJ (2001)Structural geology of the Tanami Region. Northern Territory Geological Survey, Alice Springs.Google Scholar
  61. Vandenberg LC, Crispe AJ, Green MG, Johnstone A (2002) Mount solitaire: establishing Tanami-Tennant links annual geoscience exploration seminar (AGES) record of abstracts, Northern Territory geological survey record.Google Scholar
  62. Vanderhor F (2003)Structural study of the Callie gold deposit, Northern Territory, Australia. Nemwont Mining Corporation, Newmont NFM Ltd, pp 42.Google Scholar
  63. Vielreicher NM, Groves DI, Snee LW, Fletcher IR, McNaughton NJ (2010) Broad synchroneity of three gold mineralization styles in the Kalgoorlie gold field: SHRIMP, U-Pb, and 40Ar/39Ar geochronological evidence. Econ Geol 105:187–227. CrossRefGoogle Scholar
  64. Vielreicher N, Groves D, McNaughton N, Fletcher I (2015) The timing of gold mineralization across the eastern Yilgarn craton using U–Pb geochronology of hydrothermal phosphate minerals. Mineral Deposita 50:391–428. CrossRefGoogle Scholar
  65. Voulgaris P, Emslie J (2004) Geology and ore estimation at the Callie underground gold mine, Tanami, NT. The Aus IMM Bull 2:71–78Google Scholar
  66. Williams NC (2006) The role of decarbonization and structure in the Callie gold deposit, Tanami Region of northern Australia. Mineral Deposita 42:65–87. CrossRefGoogle Scholar
  67. Wygralak AS, Mernagh TP, Huston DL, Ahmad M (2004) Gold mineral system of the Tanami Region. Northern Territory Geological Survey, Northern Territory, pp 98.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Exploration TargetingUniversity of Western AustraliaCrawleyAustralia
  2. 2.Départment de géologie et génie géologiqueUniversité LavalQuébecCanada
  3. 3.CSIRO Australian Resources Research CentreKensingtonAustralia
  4. 4.Department of Earth SciencesUniversity of New BrunswickFrederictonCanada
  5. 5.Newmont Mining CorporationWelshpoolAustralia

Personalised recommendations