Advertisement

Defining early stages of IOCG systems: evidence from iron oxides in the outer shell of the Olympic Dam deposit, South Australia

  • Max R. Verdugo-IhlEmail author
  • Cristiana L. Ciobanu
  • Nigel J. Cook
  • Kathy J. Ehrig
  • Liam Courtney-Davies
Article
  • 79 Downloads

Abstract

The IOCG deposit at Olympic Dam (South Australia) is hosted within the Roxby Downs Granite, which displays a weakly mineralised contact to the orebody (hereafter ‘outer shell’). In a mineralogical-geochemical characterisation of Fe-oxides from the outer shell, we show silician magnetite (Si-magnetite) and HFSE-bearing hematite define the early stages of alkali-calcic alteration. This association forms in the presence of hydrothermal K-feldspar and calc-silicates via overprinting of magmatic magnetite and ilmenite breakdown. Geochemical modelling, at ≥ 400 °C, shows such reactions occur at pH-fO2 conditions coinciding with shifts from K-feldspar to sericite, and ilmenite to rutile stability. The subsequent Si-magnetite+siderite association forms down-T in the absence of K-feldspar. Transition from granular to bladed morphologies in Si-magnetite is part of a series of Fe-oxide interconversions, followed by formation of zoned, U-W-Sn-Mo-bearing hematite. Enrichment in REE, Y and U in Si-magnetite and the prevalence of U-W-Sn-Mo-bearing hematite support a granite-derived fluid. Combined, petrographic and geochemical evidence show a transition among Fe-oxides from the outer shell to the orebody attributable to the evolution of the same fluid. Unusual massive magnetite intervals and Fe-oxide nodules in granite are considered due to either the presence of inherited lithologies, metasomatic products, or the result of magnetite-rich, crystal mush forming in the melt. We propose a model, corroborated by recently published data including high-precision U-Pb dating of magmatic zircon and hydrothermal hematite, in which an ‘outer shell’ is initiated at the 6–8 km depth of granite emplacement during volatile release from fluids ponding at intrusion margins. Granite cupola collapse at shallower levels (2–3 km?) follows via uplift along faults, facilitating intense brecciation and ore formation.

Keywords

IOCG Olympic Dam Fe-metasomatism Silician magnetite HFSE-bearing hematite 

Notes

Acknowledgments

We extend thanks to the staff of Adelaide Microscopy, particularly Sarah Gilbert and Benjamin Wade, who assisted with LA-ICP-MS and EPMA, respectively. Constructive comments from Peter Pollard, an anonymous reviewer, Associate Editor David Huston and Editor-in-Chief Bernd Lehmann are appreciated, and helped improve the manuscript.

Funding information

This work is a contribution to the ‘FOX’ project (Trace elements in iron oxides: deportment, distribution and application in ore genesis, geochronology, exploration and mineral processing), supported by BHP Olympic Dam and the South Australian Government Mining and Petroleum Services Centre of Excellence. N.J.C. acknowledges support from the ARC Research Hub for Australian Copper-Uranium (Grant IH130200033).

Supplementary material

126_2019_896_MOESM1_ESM.pdf (214 kb)
ESM 1 (PDF 214 kb)
126_2019_896_MOESM2_ESM.xlsx (196 kb)
ESM 2 (XLSX 196 kb)
126_2019_896_MOESM3_ESM.pdf (11.3 mb)
ESM 3 (PDF 11593 kb)

References

  1. Allen SR, McPhie J, Ferris G, Simpson C (2008) Evolution and architecture of a large felsic Igneous Province in western Laurentia: The 1.6 Ga Gawler Range Volcanics, South Australia. J Volcanol Geotherm Res 172:132–147.  https://doi.org/10.1016/j.jvolgeores.2005.09.027
  2. Apukhtina OB, Kamenetsky VS, Ehrig K, Kamenetsky MB, McPhie J, Mass R, Meffre S, Goemann K, Rodemann T, Cook NJ, Ciobanu CL (2016) Postmagmatic magnetite–apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia. Contrib Mineral Petrol 171:15.  https://doi.org/10.1007/s00410-015-1215-7 CrossRefGoogle Scholar
  3. Apukhtina OB, Kamenetsky VS, Ehrig K, Kamenetsky MB, Mass R, Thompson J, McPhie J, Ciobanu CL, Cook NJ (2017) Early, deep magnetite-fluorapatite mineralization at the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ Geol 112:1531–1542.  https://doi.org/10.5382/econgeo.2017.4520 CrossRefGoogle Scholar
  4. Barton MD (2014) Iron oxide(–Cu–Au–REE–P–Ag–U–Co) systems. In: Turekian K, Holland H, Scott SD (eds) Treatise on Geochemistry, vol 13, 2nd edn. Elsevier, New York, pp 515–541. doi:  https://doi.org/10.1016/B978-0-08-095975-7.01123-2
  5. Bastrakov EN, Skirrow RG, Davidson GJ (2007) Fluid evolution and origins of iron oxide Cu-Au prospects in the Olympic Dam District, Gawler Craton, South Australia. Econ Geol 102:1415–1440.  https://doi.org/10.2113/gsecongeo.102.8.1415
  6. Blissett AH, Creaser RA, Daly SJ, Flint RB, Parker AJ (1993) Gawler Range Volcanics. In: Drexel JF, Preiss WV, Parker AJ (eds) The Geology of South Australia. Vol. 1, The Precambrian, South Australia Geological Survey, Bulletin 54, pp 107–124Google Scholar
  7. Bosi F, Biagioni C, Pasero M (2019) Nomenclature and classification of the spinel supergroup. Eur J Mineral 31:183–192.  https://doi.org/10.1127/ejm/2019/0031-2788 CrossRefGoogle Scholar
  8. Cherry AR, Ehrig K, Kamenetsky VS, McPhie J, Crowley JL, Kamenetsky MB (2018) Precise geochronological constraints on the origin, setting and incorporation of ca. 1.59 Ga surficial facies into the Olympic Dam Breccia Complex, South Australia. Precambrian Res 315:162–178.  https://doi.org/10.1016/j.precamres.2018.07.012
  9. Ciobanu CL, Wade BP, Cook NJ, Schmidt Mumm A, Giles D (2013) Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: a geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambrian Res 238:129–147.  https://doi.org/10.1016/j.precamres.2013.10.007 CrossRefGoogle Scholar
  10. Ciobanu CL, Cook NJ, Wade BP, Ehrig K (2014) Ore minerals down to nanoscale: petrogenetic implications. Acta Geol Sin-Engl 88:1441–1443.  https://doi.org/10.1111/1755-6724.12382_2
  11. Ciobanu CL, Cook NJ, Ehrig K, Wade BP, Kamenetsky VS (2015) Trace element signatures in iron oxides from the Olympic Dam IOCG deposit, South Australia. In: Mineral Resources in a Sustainable World, Proceedings of the 13th SGA Biennial Meeting, Nancy, France, 24-27 August 2015. 3:1071–1074 Google Scholar
  12. Ciobanu CL, Cook NJ, Ehrig K (2017) Ore minerals down to the nanoscale: Cu-(Fe)-sulphides from the iron oxide copper gold deposit at Olympic Dam, South Australia. Ore Geol Rev 81:1218–1235.  https://doi.org/10.1016/j.oregeorev.2016.08.015 CrossRefGoogle Scholar
  13. Ciobanu CL, Verdugo-Ihl MR, Slattery A, Cook NJ, Ehrig KJ, Courtney-Davies L (2018) Nanoscale study of silician magnetite from IOCG systems: examples from the Olympic Dam District, South Australia. In: Proceedings of the 15th Quadrennial International Association on the Genesis of Ore Deposits symposium, Salta, Argentina, 28-31 August 2018. pp 185–186Google Scholar
  14. Ciobanu CL, Verdugo-Ihl MR, Slattery A, Cook NJ, Ehrig K, Courtney-Davies L, Wade BP (2019) Silician magnetite: Si–Fe-nanoprecipitates and other mineral inclusions in magnetite from the Olympic Dam deposit, South Australia. Minerals 9:311.  https://doi.org/10.3390/min9050311
  15. Cook N, Ciobanu CL, George L, Zhu Z-Y, Wade B, Ehrig K (2016) Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: approaches and opportunities. Minerals 6:111.  https://doi.org/10.3390/min6040111 CrossRefGoogle Scholar
  16. Cook NJ, Ciobanu CL, Ehrig K, Slattery A, Verdugo-Ihl MR, Courtney-Davies L, Gao W (2017) Advances and opportunities in ore mineralogy. Minerals 7:233.  https://doi.org/10.3390/min7120233 CrossRefGoogle Scholar
  17. Courtney-Davies L, Zhu Z, Ciobanu CL, Wade BP, Cook NJ, Ehrig K, Cabral AR, Kennedy A (2016) Matrix-matched iron-oxide laser ablation ICP-MS U–Pb geochronology using mixed solution standards. Minerals 6:85.  https://doi.org/10.3390/min6030085 CrossRefGoogle Scholar
  18. Courtney-Davies L, Ciobanu CL, Tapster SR, Cook NJ, Ehrig KJ, Kennedy AK, Condon DJ, Verdugo-Ihl MR, Wade BP, Gilbert SE (2018) The U-Pb systematics of hydrothermal hematite: insights from the IOCG system at Olympic Dam, South Australia. In: Proceedings of the 15th Quadrennial International Association on the Genesis of Ore Deposits symposium, Salta, Argentina, 28-31 August 2018. pp 171–172Google Scholar
  19. Courtney-Davies L, Tapster SR, Ciobanu CL, Cook NJ, Verdugo-Ihl MR, Ehrig KJ, Kennedy AK, Gilbert SE, Condon DJ, Wade BP (2019) A multi-technique evaluation of hydrothermal hematite U–Pb isotope systematics: Implications for ore deposit geochronology. Chem Geol 513:54–72.  https://doi.org/10.1016/j.chemgeo.2019.03.005
  20. Cowley W, Conor C, Zang W (2003) New and revised Proterozoic stratigraphic units on northern Yorke Peninsula. Mesa J 29:46–58Google Scholar
  21. Creaser RA (1996) Petrogenesis of a Mesoproterozoic quartz latite-granitoid suite from the Roxby Downs area, South Australia. Precambrian Res 79:371–394.  https://doi.org/10.1016/S0301-9268(96)00002-2
  22. Dare SAS, Barnes S-J, Beaudoin G (2015) Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineral Deposita 50:607–617.  https://doi.org/10.1007/s00126-014-0560-1 CrossRefGoogle Scholar
  23. Deditius AP, Reich M, Simon AC, Suvorova S, Knipping J, Roberts MP, Rubanov S, Dodd A, Saunders M (2018) Nanogeochemistry of hydrothermal magnetite. Contrib Mineral Petrol 173:46.  https://doi.org/10.1007/s00410-018-1474-1 CrossRefGoogle Scholar
  24. Dmitrijeva M, Metcalfe AV, Ciobanu CL, Cook NJ, Frenzel M, Keyser WM, Johnson G, Ehrig K (2018) Discrimination and variance structure of trace element signatures in Fe-oxides: a case study of BIF-mineralisation from the Middleback Ranges, South Australia. Math Geosci 50:381–415.  https://doi.org/10.1007/s11004-018-9734-1 CrossRefGoogle Scholar
  25. Dmitrijeva M, Ehrig KJ, Ciobanu CL, Cook NJ, Verdugo-Ihl MR, Metcalfe AV (2019) Defining IOCG signatures through compositional data analysis: a case study of lithogeochemical zoning from the Olympic Dam deposit, South Australia. Ore Geol Rev 105:86–101.  https://doi.org/10.1016/j.oregeorev.2018.12.013 CrossRefGoogle Scholar
  26. Donovan JJ, Singer JW, Armstrong JT (2016) A new EPMA method for fast trace element analysis in simple matrices. Am Mineral 101:1839–1853.  https://doi.org/10.2138/am-2016-5628 CrossRefGoogle Scholar
  27. Ehrig K, McPhie J, Kamenetsky V (2012) Geology and mineralogical zonation of the Olympic Dam iron oxide Cu-U-Au-Ag deposit, South Australia. In: Hedenquist JW, Harris M, Camus F (eds) Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe. Soc of Econ Geol Spec Pub 16:237–267.  https://doi.org/10.5382/SP.16.11
  28. Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654.  https://doi.org/10.2113/gsecongeo.105.3.641
  29. Haynes DW, Cross KC, Bills RT, Reed MH (1995) Olympic Dam ore genesis: a fluid-mixing model. Econ Geol 90:281–307.  https://doi.org/10.2113/gsecongeo.90.2.281 CrossRefGoogle Scholar
  30. Hitzman MW (2000) Iron-oxide-Cu-Au deposits: What, where, when, and why. In: Porter TM (ed) Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective. PGC Publishing, Adelaide, vol. 1, pp 9–25Google Scholar
  31. Huang Q, Kamenetsky VS, McPhie J, Ehrig K, Meffre S, Mass R, Thompson J, Kamenetsky M, Chambefort I, Apukhhtina O, Hu Y (2015) Neoproterozoic (ca. 820–830 Ma) mafic dykes at Olympic Dam, South Australia: Links with the Gairdner Large Igneous Province. Precambrian Res 271:160–172.  https://doi.org/10.1016/j.precamres.2015.10.001
  32. Huang Q, Kamenetsky VS, Ehrig K, McPhie J, Kamenetsky M, Cross K, Meffre S, Agangi A, Chambefort I, Direen NG, Mass R, Apukhtina O (2016) Olivine-phyric basalt in the Mesoproterozoic Gawler silicic large igneous province, South Australia: Examples at the Olympic Dam Iron Oxide Cu–U–Au–Ag deposit and other localities. Precambrian Res 281:185–199.  https://doi.org/10.1016/j.precamres.2016.05.019
  33. Huberty JM, Konishi H, Heck PR, Fournelle JH, Valley JW, Xu H (2012) Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia. Am Mineral 97:26–37.  https://doi.org/10.2138/am.2012.3864
  34. Ismail R, Ciobanu CL, Cook NJ, Teale GS, Giles D, Schmidt Mumm A, Wade B (2014) Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide–copper–gold deposit, Yorke Peninsula, South Australia. Lithos 184–187:456–477.  https://doi.org/10.1016/j.lithos.2013.07.023
  35. Jagodzinski EA (2005) Compilation of SHRIMP U-Pb geochronological data, Olympic Domain, Gawler Craton, South Australia, 2001–2003. Geoscience Australia, Record 2005/20. 197 pp.Google Scholar
  36. Keyser W, Ciobanu CL, Cook NJ, Johnson G, Feltus H, Johnson S, Dmitrijeva M, Ehrig K, Nguyen PT (2018) Petrography and trace element signatures of iron-oxides in deposits from the Middleback Ranges, South Australia: from banded iron formation to ore. Ore Geol Rev 93:337–360.  https://doi.org/10.1016/j.oregeorev.2018.01.006 CrossRefGoogle Scholar
  37. Knauss KG, Dibley MJ, Bourcier WL, Shaw HF (2001) Ti(IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300°C. Appl Geochem 16:1115–1128.  https://doi.org/10.1016/S0883-2927(00)00081-0 CrossRefGoogle Scholar
  38. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43:591–594.  https://doi.org/10.1130/G36650.1 CrossRefGoogle Scholar
  39. Kontonikas-Charos A, Ciobanu CL, Cook NJ (2014) Albitization and redistribution of REE and Y in IOCG systems: insights from Moonta-Wallaroo, Yorke Peninsula, South Australia. Lithos 208–209:178–201.  https://doi.org/10.1016/j.lithos.2014.09.001 CrossRefGoogle Scholar
  40. Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Krneta S, Kamenetsky VS (2017) Feldspar evolution in the Roxby Downs Granite, host to Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam, South Australia. Ore Geol Rev 80:838–859.  https://doi.org/10.1016/j.oregeorev.2016.08.019
  41. Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Ismail R, Krneta S, Basak A (2018) Feldspar mineralogy and rare-earth element (re)mobilization in iron-oxide copper gold systems from South Australia: a nanoscale study. Mineral Mag 82:S173–S197.  https://doi.org/10.1180/minmag.2017.081.040 CrossRefGoogle Scholar
  42. Krneta S, Ciobanu CL, Cook NJ, Ehrig K, Kontonikas-Charos A (2016) Apatite at Olympic Dam, South Australia: a petrogenetic tool. Lithos 262:470–485.  https://doi.org/10.1016/j.lithos.2016.07.033 CrossRefGoogle Scholar
  43. Krneta S, Ciobanu CL, Cook NJ, Ehrig K, Kontonikas-Charos A (2017) Rare earth element behaviour in apatite from the Olympic Dam Cu–U–Au–Ag deposit, South Australia. Minerals 7:135.  https://doi.org/10.3390/min7080135 CrossRefGoogle Scholar
  44. Krneta S, Ciobanu C, Cook N, Ehrig K (2018) Numerical modeling of REE fractionation patterns in fluorapatite from the Olympic Dam deposit (South Australia). Minerals 8:342.  https://doi.org/10.3390/min8080342 CrossRefGoogle Scholar
  45. Lund CRF, Dumesic JA (1981) Strong oxide-oxide interactions in silica-supported magnetite catalysts. 1. X-ray diffraction and Mössbauer spectroscopy evidence for interaction. J Phys Chem 85:3175–3180.  https://doi.org/10.1021/j150621a034 CrossRefGoogle Scholar
  46. Mauger AJ, Ehrig K, Kontonikas-Charos A, Ciobanu CL, Cook NJ, Kamenetsky VS (2016) Alteration at the Olympic Dam IOCG–U deposit: insights into distal to proximal feldspar and phyllosilicate chemistry from infrared reflectance spectroscopy. Aust J Earth Sci 63:959–972.  https://doi.org/10.1080/08120099.2016.1264474 Google Scholar
  47. Meinert LD, Dipple G M, Nicolescu S (2005) World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol 100th Anniv Vol, Society of Economic Geologists, Littleton, pp 299–336.  https://doi.org/10.1130/0091-7613(1993)021
  48. Morales Ruano S, Both RA, Golding SD (2002) A fluid inclusion and stable isotope study of the Moonta copper–gold deposits, South Australia: evidence for fluid immiscibility in a magmatic hydrothermal system. Chem Geol 192:211–226.  https://doi.org/10.1016/S0009-2541(02)00197-3 CrossRefGoogle Scholar
  49. Ohkawa M, MiyaharaA M, Ohta E, Hoshino K (2007) Silicon-substituted magnetite and accompanying iron oxides and hydroxides from the Kumano mine, Yamaguchi prefecture, Japan: reexamination of the so-called maghemite (γ-Fe2O3). J Mineral Petrol Sci 102:182–193.  https://doi.org/10.2465/jmps.050706 CrossRefGoogle Scholar
  50. Oreskes N, Einaudi MT (1990) Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia. Econ Geol 85:1–28.  https://doi.org/10.2113/gsecongeo.85.1.1 CrossRefGoogle Scholar
  51. Oreskes N, Einaudi MT (1992) Origin of hydrothermal fluids at Olympic Dam: preliminary results from fluid inclusions and stable isotopes. Econ Geol 87:64–90.  https://doi.org/10.2113/gsecongeo.87.1.64 CrossRefGoogle Scholar
  52. Otake T, Wesolowski DJ, Anovitz LM, Allard LF, Ohmoto H (2007) Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions. Earth Planet Sci Lett 257:60–70.  https://doi.org/10.1016/j.epsl.2007.02.022 CrossRefGoogle Scholar
  53. Otake T, Wesolowski DJ, Anovitz LM, Allard LF, Ohmoto H (2010) Mechanisms of iron oxide transformations in hydrothermal systems. Geochim Cosmochim Acta 74:6141–6156.  https://doi.org/10.1016/j.gca.2010.07.024 CrossRefGoogle Scholar
  54. Ovalle JT, La Cruz NL, Reich M, Barra F, Simon AC, Konecke BA, Rodriguez-Mustafa MA, Deditius AP, Childress TM, Morata D (2018) Formation of massive iron deposits linked to explosive volcanic eruptions. Sci Rep 8:14855.  https://doi.org/10.1038/s41598-018-33206-3 CrossRefGoogle Scholar
  55. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518.  https://doi.org/10.1039/c1ja10172b CrossRefGoogle Scholar
  56. Pollard PJ (2001) Sodic(−calcic) alteration in Fe-oxide−Cu−Au districts: an origin via unmixing of magmatic H2O−CO2−NaCl ± CaCl2−KCl fluids. Mineral Deposita 36:93–100.  https://doi.org/10.1007/s001260050289
  57. Reeve JS, Cross KC, Smith RN, Oreskes N (1990) Olympic Dam copper-uranium-gold-silver deposit. In: Hughes FE (ed) Geology of the Mineral Deposits of Australia and Papua New Guinea. Australasian Institute of Mining and Metallurgy, Melbourne, pp 1009–1035Google Scholar
  58. Richards JP, Mumin AH (2013) Magmatic-hydrothermal processes within an evolving earth: Iron oxide-copper-gold and porphyry Cu±Mo±Au deposits. Geology 41:767–770.  https://doi.org/10.1130/G34275.1 CrossRefGoogle Scholar
  59. Roberts DE, Hudson GRT (1983) The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia. Econ Geol 78:799–822.  https://doi.org/10.2113/gsecongeo.78.5.799 CrossRefGoogle Scholar
  60. Tkachev AV (2011) Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time. Geol Soc Lond Spec Publ 350:7–23.  https://doi.org/10.1144/SP350.2 CrossRefGoogle Scholar
  61. van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICP-MS. in: Sylvester PJ (ed) Laser-Ablation-ICPMS in the Earth Sciences; Principles and Applications. Mineralogical Association of Canada, Short Course Series 29. pp 239–243Google Scholar
  62. Verdugo-Ihl MR, Ciobanu CL, Cook NJ, Ehrig KJ, Courtney-Davies L, Gilbert S (2017a) Textures and U-W-Sn-Mo signatures in hematite from the Olympic Dam Cu-U-Au-Ag deposit, South Australia: defining the archetype for IOCG deposits. Ore Geol Rev 91:173–195.  https://doi.org/10.1016/j.oregeorev.2017.10.007 CrossRefGoogle Scholar
  63. Verdugo-Ihl MR, Ciobanu CL, Cook NJ, Courtney-Davies L, Ehrig KJ, Gilbert S (2017b) Trace element signatures in U-W-Sn-Mo zoned hematite from the IOCG deposit at Olympic Dam, South Australia. In: Mineral Resources to Discover, Proceedings of the 14th Biennial SGA Conference, Quebec City, QC, Canada, 20–23 August 2017. pp 967–970Google Scholar
  64. Wang X, Wei W, Lv X, Fan X, Wang S (2017) Stanniferous magnetite composition from the Haobugao skarn Fe-Zn deposit, southern Great Xing’an Range: implication for mineral depositional mechanism. Geol J 53:1823–1839. doi:  https://doi.org/10.1002/gj.3009
  65. Xu H, Shen Z, Konishi H (2014) Si-magnetite nano-precipitates in silician magnetite from banded iron formation: Z-contrast imaging and ab initio study. Am Mineral 99:2196–2202.  https://doi.org/10.2138/am-2014-4964 CrossRefGoogle Scholar
  66. Zimmer K, Zhang Y, Lu P, Chen Y, Zhang G, Dalkillic M, Zhu C (2016) SUPCRTBL: a revised and extended thermodynamic dataset and software package of SUPCRT92. Comput Geosci 90:97–111.  https://doi.org/10.1016/j.cageo.2016.02.013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringThe University of AdelaideAdelaideAustralia
  2. 2.BHP Olympic DamAdelaideAustralia

Personalised recommendations