Advertisement

Genesis of hydrothermal silver-antimony-sulfide veins of the Bräunsdorf sector as part of the classic Freiberg silver mining district, Germany

  • Mathias Burisch
  • Anthea Hartmann
  • Wolfgang Bach
  • Patrick Krolop
  • Joachim Krause
  • Jens Gutzmer
Article
  • 144 Downloads

Abstract

The peripheral regions of the Freiberg vein-type silver mining district comprise several sub-districts of which Bräunsdorf was among the richest in terms of Ag grade. Historically, 114 t (about 3.9 million ounces) of Ag were produced from the Neue Hoffnung Gottes mine near Bräunsdorf. The Neuer Segen Gottes Stehender is a sigmoidally shaped NNE-SSW trending vein, which varies significantly in thickness (0.05 to 3 m) and extends over about 2.6 km strike length at the surface. The vein infill is marked by a Pb-Zn-Cu-Fe-sulfide-quartz (stage 1) and an abundant Ag-Sb-sulfide/sulfosalt-quartz ± carbonate assemblage (stage 2). To develop a sound genetic understanding of the polymetallic mineralisation in the Bräunsdorf sub-district, we conducted detailed textural analyses of ore and gangue minerals, fluid inclusion analyses, electron microprobe analyses and thermodynamic computations in order to characterise the ore fluids and ore-forming processes. The early-stage Pb-Zn-Cu-Fe-sulfide mineralisation (stage 1) is related to fluids with low salinities (0.5–4% eq. w(NaCl)) and formed at temperatures ≥ 300 °C. Microthermometric data related to the Ag-Sb-sulfide/sulfosalt assemblage (stage 2) show similar salinites compared to ore stage 1, but have significantly lower homogenisation temperatures in the range of 180–280 °C. Based on fluid inclusion data, cooling can be regarded as the major ore-forming process. Reaction path model calculations for cooling of fluids with different initial pH values (4, 5.5 and 7) reproduce the observed mineral assemblages very well and predict spatial zonation of the Ag-Sb- and Sb-sulfide minerals that are in excellent agreement with field observations. We conclude that Ag-rich zones may well occur below Sb-rich zones in hydrothermal vein-type systems similar to those of the Freiberg district. This relationship may be of potential use for exploration targeting.

Keywords

Stibnite Tennantite-tetrahedrite Fluid inclusions Reaction path modelling Epithermal system 

Notes

Acknowledgements

We would like to sincerely thank Lluís Fontboté, Pilar Lecumberri-Sanchez and an anonymous reviewer who significantly helped to improve an earlier version of the manuscript. Furthermore, we would like to thank Bernd Lehmann for constructive comments and the editorial handling. We would like to thank Christin Kehrer for access to the geoscientific mineral collections of the TU Bergakademie Freiberg and support with the sample selection. Sabine Gilbricht is thanked for support with the SEM. Andreas Bartzsch, Roland Würkert and Michael Stoll are thanked for the sample preparation. Matthias Jurgeit and Uwe Lehmann are thanked for insightful discussions. This project was partly funded by the Landesamt für Umwelt, Landwirtschaft und Geologie Sachsen (Geological Survey of the Federal State of Saxony) and the European Social Fund (ESF; grant 100339454).

Supplementary material

126_2018_842_MOESM1_ESM.xlsx (28 kb)
ESM 1 (XLSX 28 kb)
126_2018_842_MOESM2_ESM.xlsx (36 kb)
ESM 2 (XLSX 36 kb)
126_2018_842_MOESM3_ESM.xlsx (27 kb)
ESM 3 (XLSX 26 kb)
126_2018_842_MOESM4_ESM.xlsx (35 kb)
ESM 4 (XLSX 35 kb)
126_2018_842_MOESM5_ESM.xlsx (32 kb)
ESM 5 (XLSX 32 kb)
126_2018_842_MOESM6_ESM.xlsx (116 kb)
ESM 6 (XLSX 115 kb)
126_2018_842_MOESM7_ESM.xlsx (28 kb)
ESM 7 (XLSX 27 kb)
126_2018_842_MOESM8_ESM.xlsx (48 kb)
ESM 8 (XLSX 47 kb)

References

  1. Arce Burgoa OR (2009) Metalliferous ore deposits of Bolivia. Schweizerbart, StuttgartGoogle Scholar
  2. Bauer M, Burisch M, Ostendorf J, Krause J, Frenzel M, Seifert T, Gutzmer J (2018) Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions and sulfur isotope geochemistry. Mineralium Deposita, accepted (this issue)Google Scholar
  3. Baumann L (1965) Die Erzlagerstätten der Freiberger Randgebiete. Freib Forsch 188(C):1–216Google Scholar
  4. Bente K, Doering T (1995) Experimental studies on the solid state diffusion of cu+ in in ZnS and on “disease”, DIS (diffusion induced segregations), in sphalerite and their geological applications. Mineral Petrol 53:285–305CrossRefGoogle Scholar
  5. Bessinger B, Apps JA (2003) The hydrothermal chemistry of gold, arsenic, antimony, mercury and silver. Lawrence Berkeley National Laboratory, https://escholarship.org/uc/item/7df4h7wt. Accessed 04 January 2018
  6. Boiron M, Cathelineau M, Dubessy J, Bastoul A (1990) Fluids in Hercynian Au veins from the French Variscan belt. Mineral Mag 54:231–243CrossRefGoogle Scholar
  7. Breithaupt JFA (1849) Die Paragenesis der Mineralien: Mineralogisch, geognostisch und chemisch beleuchtet, mit besonderer Rücksicht auf Bergbau. Engelhardt, FreibergGoogle Scholar
  8. Breithaupt A (1935) Über den Berthierit (von Bräunsdorf). Jahrbuch der praktischen Chemie 4:279–281CrossRefGoogle Scholar
  9. Burisch M, Gerdes A, Walter BF, Neumann U, Fettel M, Markl G (2017) Methane and the origin of five-element veins: mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geol Rev 81:42–61CrossRefGoogle Scholar
  10. Clayton R, Scrivener R, Stanley C (1990) Mineralogical and preliminary fluid inclusion studies of lead-antimony mineralisation in North Cornwall. Proc Ussher Soc 7:258–262Google Scholar
  11. Desanois L, Lüders V, Niedermann S, Trumbull RB (2018) Formation of epithermal Sn-Ag-(Zn) vein-type mineralization at the Pirquitas deposit, NW Argentina: fluid inclusion and noble gas isotopic constraints. Chem GeolGoogle Scholar
  12. Dill HG (1993) Die Antimonvorkommen der mitteleuropäischen Alpiden und Varisziden. Z Dtsch Geol Ges 144:434–450Google Scholar
  13. Fontboté L, Kouzmanov K, Chiaradia M, Pokrovski GS (2017) Sulfide minerals in hydrothermal deposits. Elements 13:97–103CrossRefGoogle Scholar
  14. Förster H-J (1999) Die variszischen Granite des Erzgebirges und ihre akzessorischen Minerale. TU Bergakademie Freiberg, p 253Google Scholar
  15. Goldstein RH (2001) Fluid inclusions in sedimentary and diagenetic systems. Lithos 55:159–193CrossRefGoogle Scholar
  16. Gumiel P, Arribas A (1987) Antimony deposits in the Iberian Peninsula. Econ Geol 82:1453–1463CrossRefGoogle Scholar
  17. Hedenquist JW, Henley RW (1985) The importance of CO2 on freezing point measurements of fluid inclusions; evidence from active geothermal systems and implications for epithermal ore deposition. Econ Geol 80:1379–1406CrossRefGoogle Scholar
  18. Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput Geosci 18:899–947CrossRefGoogle Scholar
  19. Kotková J, Kullerud K, Šrein V, Drábek M, Škoda R (2018) The Kongsberg silver deposits, Norway: Ag-Hg-Sb mineralization and constraints for the formation of the deposits. Mineral Deposita 53:531–545CrossRefGoogle Scholar
  20. Krolop P, Burisch M, Richter L, Fritzke B, Seifert T (2018) Antimoniferous vein-type mineralization of the Berga Antiform, Eastern-Thuringia, Germany: a fluid inclusion study. Chem Geol.  https://doi.org/10.1016/j.chemgeo.2018.02.034
  21. Lüders V (2017) Contribution of infrared microscopy to studies of fluid inclusions hosted in some opaque ore minerals: possibilities, limitations, and perspectives. Mineral Deposita 52:663–673CrossRefGoogle Scholar
  22. Markl G, Burisch M, Neumann U (2016) Natural fracking and the genesis of five-element veins. Mineral Deposita 51:703–712CrossRefGoogle Scholar
  23. Moritz R (2006) Fluid salinities obtained by infrared microthermometry of opaque minerals: implications for ore deposit modeling—a note of caution. J Geochem Explor 89:284–287CrossRefGoogle Scholar
  24. Müller H (1901) Die Erzgänge des Freiberger Bergrevieres. Engelmann, p 336Google Scholar
  25. Munoz M, Courjault-Radé P, Tollon F (1992) The massive stibnite veins of the French Palaeozoic basement: a metallogenic marker of Late Variscan brittle extension. Terra Nova 4:171–177CrossRefGoogle Scholar
  26. Ortega L, Vindel E (1995) Evolution of ore-forming fluids associated with late Hercynian antimony deposits in central/western Spain; case study of Mari Rosa and El Juncalon. Eur J Mineral 7:655–673CrossRefGoogle Scholar
  27. Osbahr I, Krause J, Bachmann K, Gutzmer J (2015) Efficient and accurate identification of platinum-group minerals by a combination of mineral liberation and electron probe microanalysis with a new approach to the offline overlap correction of platinum-group element concentrations. Microsc Microanal 21:1080–1095CrossRefGoogle Scholar
  28. Ostendorf J, Henjes-Kunst F, Seifert T, Gutzmer J (2018) Age and genesis of polymetallic vein-type mineralization in the Freiberg ore district, Erzgebirge (Germany): Constraints from radiogenic isotopes. Mineralium Deposita, accepted (this issue)Google Scholar
  29. Pavlova G, Borovikov A (2010) Silver–antimony deposits of Central Asia: physico-chemical model of formation and sources of mineralisation. Aust J Earth Sci 57:755–775CrossRefGoogle Scholar
  30. Petersen U, Noble D, Arenas M, Goodell P (1977) Geology of the Julcani mining district, Peru. Econ Geol 72:931–949CrossRefGoogle Scholar
  31. Pietzsch K (1962) Geologie von Sachsen. Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  32. Pochon A, Gapais D, Gloaguen E, Gumiaux C, Branquet Y, Cagnard F, Martelet G (2016) Antimony deposits in the Variscan Armorican belt, a link with mafic intrusives? Terra Nova 28:138–145CrossRefGoogle Scholar
  33. Pokrovski GS, Borisova AY, Roux J, Hazemann J-L, Petdang A, Tella M, Testemale D (2006) Antimony speciation in saline hydrothermal fluids: a combined X-ray absorption fine structure spectroscopy and solubility study. Geochim Cosmochim Acta 70:4196–4214CrossRefGoogle Scholar
  34. Sack RO, Lichtner PC (2009) Constraining compositions of hydrothermal fluids in equilibrium with polymetallic ore-forming sulfide assemblages. Econ Geol 104:1249–1264CrossRefGoogle Scholar
  35. Sack RO, Lynch J, Foit F (2003) Fahlore as a petrogenetic indicator: Keno Hill Ag-Pb-Zn district, Yukon, Canada. Mineral Mag 67:1023–1038CrossRefGoogle Scholar
  36. Seal I, Robert R, Robie RA, Barton PB Jr, Hemingway B (1992) Superambient heat capacities of synthetic stibnite, berthierite, and chalcostibite: revised thermodynamic properties and implications for phase equilibria. Econ Geol 87:1911–1918CrossRefGoogle Scholar
  37. Seifert T (2008) Metallogeny and petrogenesis of lamprophyres in the Mid-European Variscides: post-collisional magmatism and its relationship to Late-Variscan ore forming processes in the Erzgebirge (Bohemian Massif). IOS Press, RotterdamGoogle Scholar
  38. Seifert T, Sandmann D (2006) Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany. Ore Geol Rev 28:1–31CrossRefGoogle Scholar
  39. Shock EL, Sassani DC, Willis M, Sverjensky DA (1997) Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim Cosmochim Acta 61:907–950CrossRefGoogle Scholar
  40. Sillitoe R, Halls C, Grant J (1975) Porphyry tin deposits in Bolivia. Econ Geol 70:913–927CrossRefGoogle Scholar
  41. Steele-MacInnis M, Lecumberri-Sanchez P, Bodnar RJ (2012) HokieFlincs_H2O-NaCl: a Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Comput Geosci 49:334–337CrossRefGoogle Scholar
  42. Sverjensky D, Shock E, Helgeson H (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim Cosmochim Acta 61:1359–1412CrossRefGoogle Scholar
  43. Thomas R (1982) Ergebnisse der thermobarometrischen Untersuchungen an Flüssigkeitseinschlüssen in Mineralen der post-magmatischen Zinn-Wolfram Mineralisation des Erzgebirges. Freiberger Forschungshefte C 370:85Google Scholar
  44. Tichomirowa M (1997) 207Pb/206Pb-Einzelzirkonevaporisations-Datierungen zur Bestimmung des Intrusionsalters des Niederbobritzscher Granites. Terra Nostra 5:183–185Google Scholar
  45. Tichomirowa M, Sergeev S, Berger H-J, Leonhardt D (2012) Inferring protoliths of high-grade metamorphic gneisses of the Erzgebirge using zirconology, geochemistry and comparison with lower-grade rocks from Lusatia (Saxothuringia, Germany). Contrib Mineral Petrol 164:375–396CrossRefGoogle Scholar
  46. Wagner T, Cook N (2000) Late-Variscan antimony mineralisation in the Rheinisches Schiefergebirge, NW Germany: evidence for stibnite precipitation by drastic cooling of high-temperature fluid systems. Mineral Deposita 35:206–222CrossRefGoogle Scholar
  47. Walter BF, Immenhauser A, Geske A, Markl G (2015) Exploration of hydrothermal carbonate magnesium isotope signatures as tracers for continental fluid aquifers, Schwarzwald mining district, SW Germany. Chem Geol 400:87–105CrossRefGoogle Scholar
  48. Walter BF, Burisch M, Markl G (2016) Long-term chemical evolution and modification of continental basement brines—a field study from the Schwarzwald, SW Germany. Geofluids 16:604–623CrossRefGoogle Scholar
  49. Wolery T, Jove-Colon C (2004) Qualification of thermodynamic data for geochemical modeling of mineral-water interactions in dilute systems. Bechtel SAIC Company, LLC, Las Vegas, p 121CrossRefGoogle Scholar
  50. Zotov A, Shikina N, Akinfiev N (2003) Thermodynamic properties of the Sb(III) hydroxide complex Sb (OH)3(aq) at hydrothermal conditions. Geochim Cosmochim Acta 67:1821–1836CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für MineralogieTechnische Universität Bergakademie FreibergFreibergGermany
  2. 2.Fachbereich GeowissenschaftenUniversität BremenBremenGermany
  3. 3.Helmholtz-Zentrum Dresden-RossendorfHelmholtz Institut Freiberg für RessourcentechnologieFreibergGermany

Personalised recommendations