Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Temporal evolution of mineralization events in the Bohemian Massif inferred from the Re–Os geochronology of molybdenite

  • 820 Accesses

  • 16 Citations

Abstract

Molybdenite is a common mineral accompanying Sn–W, Au, and base metal mineralizations located in different geotectonic units of the Bohemian Massif, but it is also widespread in granitoids and/or related quartz veins/pegmatites forming disseminated Mo mineralization. Thirty Re–Os ages were obtained for molybdenite samples from the Bohemian Massif to provide constraints on the timing and duration of mineralization event(s) within the framework of previously published geochronological data for the host and/or associated rocks. The obtained data for Sn–W–(Li) deposits in the Erzgebirge metallogenetic province indicate the predominance of one and/or multiple short-time mineralization events taking place between ∼319 and 323 Ma, with the exception of the Krupka deposit associated with the Altenberg–Teplice caldera where the data may suggest prolonged activity until ∼315 Ma. The ages of the Pb–Zn–(Au–Mo) Hůrky u Rakovníka and Fe–Cu–As Obří důl mineralizations from the exocontacts of the Čistá pluton and Krkonoše-Jizera Plutonic Complex, respectively, provide evidence for synchronous emplacement of the ore and the associated granitic rocks. In contrast, the Padrť Fe–As–Mo mineralization postdates the age of the associated Padrť granite. Disseminated Mo mineralization in Cadomian and Variscan granitoids and/or related to quartz veins/pegmatites provides Re–Os ages that overlap with the previously published geochronological data for the host rocks, suggesting coeval evolution. Molybdenite samples from the Sázava suite granites of the Central Bohemian Plutonic Complex (CBPC) have resolvable younger ages than their host granites, but similar to the age of spatially related Au mineralization which is associated with the latest evolution of the CBPC.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Ackerman L, Pašava J, Erban V (2013) Re–Os geochemistry and geochronology of the Ransko gabbro–peridotite massif, Bohemian Massif. Miner Depos 48:799–804

  2. Aleinikoff JN, Creaser RA, Lowers HA, Magee CW Jr, Grauch RI (2012) Multiple age components in individual molybdenite grains. Chem Geol 300–301:55–60

  3. Białek D, Kryza R, Oberc-Dziedzic T, Pin C (2014) Cambrian Zawidów granodiorites in the Cadomian Lusatian Massif (Central European Variscides): what do the SHRIMP zircon ages mean? J Geosci 59:313–326

  4. Birck JL, Barman MR, Capmas F (1997) Re-Os isotopic measurements at the femtomole level in natural samples. Geostand Newsletter - J Geostand Geoanalysis 20:19–27

  5. Breiter K (2010) Geochemical classification of Variscan granitoids in the Moldanubicum. Abh Geol Bundesanstalt Wien 65:19–25

  6. Breiter K (2012) Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos 151:105–121

  7. Breiter K, Förster HJ, Seltmann R (1999) Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge-Slavkovsky les metallogenic province. Miner Depos 34:505–521

  8. Breiter K, Förster H-J, Škoda R (2006) Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: the peraluminous Podlesí granite system, Czech Republic. Lithos 88:15–34

  9. Cháb J, Breiter K, Fatka O, Hladil J, Kalvoda J, Šimůnek Z, Štorch P, Vašíček Z, Zajíc J, Zapletal J (2010) Outline of the geology of the Bohemian Massif: the basement rocks and their carboniferous and Permian cover. Czech Geological Survey, Prague

  10. Chen F, Siebel W (2004) Zircon and titanite geochronology of the Fürstenstein granite massif, Bavarian Forest, NW Bohemian Massif: pulses of the late Variscan magmatic activity. Eur J Mineral 16:777–788

  11. Cohen AS, Waters FG (1996) Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Anal Chim Acta 332:269–275

  12. Creaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochim Cosmochim Acta 55:397–401

  13. Dallmeyer RD, Urban M (1994) Variscan vs. Cadomian tectonothermal evolution within the Teplá-Barrandian zone, Bohemian Massif, Czech Republic: evidence from 40Ar/39Ar mineral and whole rock slate/phyllite ages. J Czech Geol Soc 39:21–22

  14. Dörr W, Fiala J, Franke W, Haack U, Philippe S, Schastok J, Scheuvens D, Vejnar Z, Zulauf G (1998) Cambrian vs. Variscan tectonothermal evolution within the Teplá-Barrandian: evidence from U-Pb zircon ages of syntectonic plutons (Bohemian Massif, Czech Republic). Acta Univ Carol Geol 42:229–230

  15. Drábek M, Stein H (2015) Molybdenite Re-Os dating of Mo-Th-Nb-REE rich marbles: pre-Variscan processes in Moldanubian Variegated Group (Czech Republic). Geol Carpath 66:173–179

  16. Drábek M, Dábková E, Kvaček M (1993) Distribution of rhenium, tungsten and selenium in molybdenites of the Bohemian Massif. Věst Čes Geol Úst 68:11–17

  17. Dudek A (1980) The crystalline basement block of the Outer Carpathians in Moravia: Brunovistulicum. Trans Czechoslov Acad Sci Math Nat Sci Ser 90:3–85

  18. Faryad SW (2009) The Kutná Hora Complex (Moldanubian zone, Bohemian Massif): a composite of crustal and mantle rocks subducted to HP/UHP conditions. Lithos 109:193–208

  19. Fiala J (1995) General characteristics of the Moldanubian Zone. In: Dallmayer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 417–429

  20. Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of Central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96

  21. Finger F, Hanžl P, Pin C, von Quadt A, Steyrer HP (2000) The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society of London, London, pp 103–112

  22. Finger F, Gerdes A, René M, Riegler G (2009) The Saxo-Danubian Granite Belt: magmatic response to post-collisional delamination of mantle lithosphere below the southwestern sector of the Bohemian Massif (Variscan orogen). Geol Carpath 60:205–212

  23. Förster H-J (1998) Die variszischen Granite des Erzgebirges und ihre akzessorischen Minerale. Technische Universität, Habilitation Thesis, Freiberg

  24. Förster HJ, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 287–308

  25. Förster H-J, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645

  26. Förster H-J, Romer RL, Gottesmann B, Tischendorf G, Rhede D (2009) Are the granites of the Aue–Schwarzenberg Zone (Erzgebirge, Germany) a major source for metalliferous ore deposits? A geochemical, Sr–Nd–Pb isotopic, and geochronological study. N Jb Mineral (Abh) 186:163–184

  27. Förster HJ, Rhede D, Stein HJ, Romer RL, Tischendorf G (2012) Paired uraninite and molybdenite dating of the Königshain granite: implications for the onset of late-Variscan magmatism in the Lausitz Block. Int J Earth Sci 10:57–67

  28. Franke W (1989) Variscan plate tectonics in Central Europe—current ideas and open questions. Tectonophysics 169:221–228

  29. Friedl G (1997) U–Pb Datierungen an Zirkonen und Monaziten aus Gesteinen vom österreichischen Anteil der Böhmischen Masse. PhD thesis, University of Salzburg

  30. Friedl G, Finger F, Paquette JL, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U-Pb zircon ages. Int J Earth Sci 93:802–823

  31. Fritz H, Dallmeyer RD, Neubauer F (1996) Thick-skinned versus thin-skinned thrusting: rheology controlled thrust propagation in the Variscan collisional belt (the southeastern Bohemian Massif, Czech Republic - Austria). Tectonics 15:1389–1413

  32. Gerdes A, Friedl G, Parrish RR, Finger F (2003) High-resolution geochronology of Variscan granite emplacement—the South Bohemian Batholith. J Czech Geol Soc 48:53–54

  33. Gerstenberger H, Haase G, Wemmer K (1995) Isotope systematics of the Variscan postkinematic granites in the Erzgebirge (E Germany). Terra Nostra 95:36–41

  34. Hajná J, Žák J, Kachlík V (2011) Structure and stratigraphy of the Teplá–Barrandian Neoproterozoic, Bohemian Massif: a new plate-tectonic reinterpretation. Gondwana Res 19:495–508

  35. Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Staněk K, Tichomirowa M (2013) Carboniferous-Permian volcanic evolution in Central Europe-U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci 102:73–99

  36. Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretations. J Geol Sci Econ Geol Mineral 31:5–26

  37. Holub FV, Cocherie A, Rossi P (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along Moldanubian-Barrandian boundary. Comptes Rendus Acad Sci - Ser IIa Earth Planet Sci 325:19–26

  38. Hösel G, Breiter K, Wasternack J, Tischendorf G (1995) Mineral resources in Erzgebirge Vogtland/Krušné hory. Map 2. Metals, Fluorite/Barite. Occurrences and Environmental Impact 1:100 000, Freiberg

  39. Hösel G, Tischendorf G, Wasternack J, Breiter K, Kuschka E, Pälchen W, Rank G, Štemprok M (1997) Erläuterungen zur Karte “Mineralische Rohstoffe Erzgebirge-Vogtland/Krušné hory 1:100 000”, Karte 2: Metalle, Fluorit/Baryt – Verbreitung und Auswirkung auf die Umwelt. Bergbau in Sachsen, Freiberg

  40. Janoušek V, Rogers G, Bowes DR (1995) Sr-Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundschau 84:520–534

  41. Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543

  42. Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99

  43. Janoušek V, Wiegand BA, Žák J (2010) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U-Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. J Geol Soc London 167:347–360

  44. Kempe U (2003) Precise electron microprobe age determination in altered uraninite: consequences on the intrusion age and the metallogenic significance of the Kirchberg granite (Erzgebirge, Germany). Contrib Mineral Petrol 145:107–118

  45. Kempe U, Wolf D, Ebermann U, Bombach K (1999) 330 Ma Pb/Pb single zircon evaporation ages for the Altenberg granite porphyry, Eastern Erzgebirge (Germany): implications for Hercynian granite magmatism and tin mineralization. Z Geol Wiss 27:385–400

  46. Kempe U, Bombach K, Matukov D, Schlothaueret T, Hutschenreuter W, Wolf D, Sergeev (2004) Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration. Miner Depos 39:646–669

  47. Klomínský J (1962) Hydrotermální zrudnění čisteckého masívu (západní Čechy). Acta Univ Carol Geol 3:159–176

  48. Kohút M, Trubač J, Novotný L, Ackerman L, Demko R, Bartalský B, Erban V (2013) Geology and Re-Os molybdenite geochronology of the Kurišková U-Mo deposit (Western Carpathians, Slovakia). J Geosci 58:271–282

  49. Košler J, Simonetti A, Sylvester PJ, Cox RA, Tubrett MN, Wilton DHC (2003) Laser-ablation ICP MS measurements of Re/Os in molybdenite and implications for Re-Os geochronology. Can Mineral 41:307–320

  50. Kosmatt F (1927) Gliederung des varistischen Gebirgsbaues. Abhandlungen des Sächsischen Geol Landesamtes 1:1–39

  51. Kroner U, Romer RL (2010) The Saxo-Thuringian Zone—tip of the Armorican Spur and part of the Gondwana plate. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 371–394

  52. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329

  53. Kroner U, Romer RL (2014) Comment: Anatomy of a diffuse cryptic suture zone: an example from the Bohemian massif, European Variscides. Geology 42, e340

  54. Kröner A, Hegner E, Hammer J, Haase G, Bielicki KH, Krauss M, Eidam J (1994) Geochronology and Nd-Sr systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in East-central Europe. Geol Rundschau 83:357–376

  55. Kröner A, Štípská P, Schulmann K, Jaeckel P (2000) Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. Geol Soc London, Spec Publ 179:175–197

  56. Kryza R, Schaltegger U, Oberc-Dziedzic T, Pin C, Ovtcharova M (2014) Geochronology of a composite granitoid pluton: a high-precision ID-TIMS U–Pb zircon study of the Variscan Karkonosze Granite (SW Poland). Int J Earth Sci 103:683–696

  57. Laurent A, Janoušek V, Magna T, Schulmann K, Míková J (2014) Petrogenesis and geochronology of a post-orogenic calc-alkaline magmatic association: the Žulová Pluton, Bohemian Massif. J Geosci 59:415–440

  58. Lawley CJM, Selby D (2012) Re-Os geochronology of quartz-enclosed ultrafine molybdenite: implications for ore geochronology. Econ Geol 107:1499–1505

  59. Leichmann J, Höck V (2008) The Brno Batholith: an insight into the magmatic and metamorphic evolution of the Cadomian Brunovistulian unit, eastern margin of the Bohemian Massif. J Geosci 53:281–305

  60. Lexa O, Schulmann K, Janoušek V, Štípská P, Guy A, Racek M (2011) Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. J Metamorph Geol 29:79–102

  61. Linnemann U, D’Lemos R, Drost K, Jeffries T, Gerdes A, Romer RL, Samson SD, Strachan RA (2008) Cadomian tectonics. In: McCann T (ed) Geology of Central Europe. Geological Society of London, London, pp 103–154

  62. Malkovský M, Benešová Z, Čadek J, Holub V, Chaloupský J, Jetel J, Müller V, Mašín J, Tásler R (1974) Geologie české křídové pánve a jejího podloží. Ústřední Ústav Geologický v Academii, Prague

  63. Maluski H, Rajlich P, Souček J (1995) Pre-Variscan, Variscan and Early Alpine thermo-tectonic history of the north-eastern Bohemian Massif—an Ar-40/Ar-39 study. Geol Rundschau 84:345–358

  64. Markey R, Stein HJ, Hannah JL, Zimmerman A, Selby D, Creaser RA (2007) Standardizing Re–Os geochronology: a new molybdenite reference material (Henderson, USA) and the stoichiometry of Os salts. Chem Geol 244:74–87

  65. Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nov. 13:122–128

  66. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170

  67. McCann T (ed) (2008) The geology of Central Europe: Precambrian and Palaeozoic. Geological Society of London, Bath

  68. Medaris G, Wang H, Jelínek E, Mihaljevič M, Jakeš P (2005) Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic. Lithos 82:1–23

  69. Melleton J, Gloaguen E, Frei D, Novák M, Breiter K (2012) How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic? Can Mineral 50:1751–1773

  70. Mikulski SZ, Stein HJ (2012) Wiek moubdenitów w polsce w świetle badan izotopowych Re-Os. Biul - Panstw Inst Geol 452:199–216

  71. Morávek P (1996) Gold deposits in Bohemia. Czech Geological Survey, Prague

  72. Morávek P, Litochleb J, Sejkora J, Škoda R (2010) Pegmatity s molybdenitem u Skalska na Jílovsku, Česká republika—historie, geologie a mineralogie [The pegmatites with molybdenite near Skalsko on the Jílové area, Czech Republic—history, geology and mineralogy]. Bull Miner Odd Nár Muz 18:1–22

  73. Morelli RM, Bell CC, Creaser RA, Simonetti A (2010) Constraints on the genesis of gold mineralization at the Homestake gold deposit, Black Hills, South Dakota from rhenium–osmium sulfide geochronology. Miner Depos 45:461–480

  74. Morgan JW, Walker RJ, Horan MF, Beary ES, Naldrett AJ (2002) 190Pt-186Os and 187Re–187 Os systematics of the Sudbury Igneous Complex, Ontario. Geochim Cosmochim Acta 66:273–290

  75. Novák M, Povondra P (1995) Elbaite pegmatites in the Moldanubicum: a new subtype of the rare-element class. Mineral Petrol 55:159–176

  76. Novák M, Černý P, Kimbrough DL, Taylor MC, Ercit TS (1998) U–Pb ages of monazite from granitic pegmatites in the Moldanubian Zone and their geological implications. Acta Univ Carolinae Geol 42:309–310

  77. Novák M, Škoda R, Gadas P, Krmíček L, Černý P (2012) Contrasting origins of the mixed (NYF + LCT) signature in granitic pegmatites, with examples from the Moldanubian Zone, Czech Republic. Can Mineral 50:1077–1094

  78. Oberc-Dziedzic T, Kryza R, Pin C, Madej S (2013) Variscan granitoid plutonism in the Strzelin Massif (SW Poland): petrology and age of the composite Strzelin granite intrusion. Geol Q 57:269–288

  79. Pašava J, Veselovský F, Drábek M, Svojtka M, Pour O, Klomínský J, Škoda R, Ďurišová J, Ackerman L, Halodová P, Haluzová E (2015) Molybdenite-tungstenite association in the tungsten-bearing topaz greisen at Vítkov (Krkonoše-Jizera Crystalline Complex, Bohemian Massif): indication of changes in physico-chemical conditions in mineralizing system. J Geosci 60:149–161

  80. Pašava J, Svojtka M, Veselovský F, Ďurišová J, Ackerman L, Pour O, Drábek M, Halodová P, Haluzová E (2016) Laser ablation ICP-MS study of trace element chemistry in molybdenite—an important tool for identification of different types of mineralization. Ore Geol Rev 72:874–895

  81. Porter SJ, Selby D (2010) Rhenium-osmium (Re-Os) molybdenite systematics and geochronology of the Cruachan Granite skarn mineralization, Etive Complex: implications for emplacement chronology. Scottish J Geol 46:17–21

  82. Romer RL, Thomas R, Stein HJ, Rhede D (2007) Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany. Miner Depos 42:337–359

  83. Romer RL, Förster H-J, Štemprok M (2010) Age constraints for the late-Variscan magmatism in the Altenberg–Teplice Caldera (Eastern Erzgebirge/Krušné hory). N Jb Mineral (Abh) 187:289–305

  84. Scharbert S (1987) Rb-Sr Analysen des Tonalits und Granits von der Lokalität Krizanovice (Zelezné hory). Čas Mineral Geol 32:411–412

  85. Schneider DA, Zahniser SJ, Glascock JM, Gordon SM, Manecki M (2006) Thermochronology of the west Sudetes (Bohemian Massif): rapid and repeated eduction in the eastern Variscides, Poland and Czech Republic. Am J Sci 306:846–873

  86. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux J-M, Edel J-B, Štípská P, Ulrych S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Compt Rendus Geosci 341:266–286

  87. Schulmann K, Lexa O, Janoušek V, Lardeaux JM, Edel JB (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42:275–278

  88. Selby D, Creaser RA (2001) Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Econ Geol 96:197–204

  89. Selby D, Creaser RA (2004) Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochim Cosmochim Acta 68:3897–3908

  90. Shirey SB, Walker RJ (1995) Carius tube digestion for low-blank rhenium-osmium analysis. Anal Chim Acta 67:2136–2141

  91. Slaby E, Martin H (2008) Mafic and felsic magma interaction in granites: the Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). J Petrol 49:353–391

  92. Sláma J, Dunkley DJ, Kachlík V, Kusiak MA (2008) Transition from island-arc to passive setting on the continental margin of Gondwana: U–Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian Massif. Tectonophysics 461:44–59

  93. Stein HJ, Morgan JW, Scherstén A (2000) Re-Os dating of low-level highly radiogenic (LLHR) sulfides: the Harnäs gold deposit, southwest Sweden, records continental-scale tectonic events. Econ Geol 95:1657–1671

  94. Stein HJ, Markey RJ, Morgan JW, Hannah JL, Scherste A (2001) The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nov. 13:479–486

  95. Strnad L, Goliáš V, Mihaljevič M, Pudilová M (2012) The Variscan Kašperské Hory orogenic gold deposit, Bohemian Massif, Czech Republic. Ore Geol Rev 48:428–441

  96. Tichomirova M (1997) 207Pb/206Pb-Einzelzirkondatierungen zur Bestimmung des Intrusionsalters des Niederbobritzscher Granites. Terra Nostra 97:183–184

  97. Tichomirova M (2002) Zircon inheritance in diatexite granodiorites and its consequence on geochronology—a case study in Lusatia and the Erzgebirge (Saxo-Thuringia, eastern Germany). Chem Geol 191:209–224

  98. Turniak K, Bröcker M (2002) Age of the two-mica granite from the Strzegom–Sobótka Massif: new data from U/Pb monazite and xenotime study. Mineral Soc Pol Spec Pap 20:211–213

  99. Turniak K, Tichomirova M, Bombach K (2005a) Pb-evaporation zircon ages of post-tectonic granitoids from the Strzelin Massif (SW Poland). Mineral Soc Pol Spec Pap 29:212–215

  100. Turniak K, Tichomirova M, Bombach K (2005b) Zircon Pb-evaporation ages of granitoids from the Strzegom-Sobótka Massif (SW Poland). Mineral Soc Pol Spec Pap 29:241–245

  101. van Breemen O, Aftalion M, Bowes DR, Dudek A, Mísař Z, Povondra P, Vrána S (1982) Geochronological studies of the Bohemian massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinb Earth Sci 73:89–108

  102. Venera Z, Schulmann K, Kröner A (2000) Intrusion within a transtensional tectonic domain: the Čistá granodiorite (Bohemian Massif)—structure and rheological modelling. J Struct Geol 22:1437–1454

  103. Völkening J, Walczyk T, Heumann KG (1991) Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process 105:147–159

  104. Vrána S, Blümel P, Petrakasis K (1995) Metamorphic evolution (Moldanubian region: Moldanubian zone). In: Dallmayer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 403–410

  105. Xia R, Wang C, Qing M, Deng J, Carranza EJM, Li W, Guo X, Ge L, Yu W (2015) Molybdenite Re–Os, zircon U–Pb dating and Hf isotopic analysis of the Shuangqing Fe–Pb–Zn–Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China. Ore Geol Rev 66:114–131

  106. Žáček V, Škoda R, Laufek F (2008) Molybdenem bohatý jarosit z oxidační zóny středověkého Au-Ag ložiska v Hůrkách u Rakovníka (Česká Republika). Bull Mineral Odd Nár Muz 16:190–192

  107. Zachariáš J, Stein HJ (2001) Re-Os ages of Variscan hydrothermal gold mineralisations, Central Bohemian metallogenic zone, Czech Republic. In: Piestrzynski A (ed) Mineral deposits at the beginning of the 21st century. Balkema, Lisse, pp 851–854

  108. Zachariáš J, Pertold Z, Pudilová M, Žák K, Pertoldová J, Stein HJ, Markey R (2001) Geology and genesis of Variscan porphyry-style gold mineralization, Petráčkova hora deposit, Bohemian Massif, Czech Republic. Miner Depos 36:517–541

  109. Zachariáš J, Paterová B, Pudilová M (2009) Mineralogy, fluid inclusion, and stable isotope constraints on the genesis of the Roudny Au-Ag deposit, Bohemian Massif. Econ Geol 104:53–72

  110. Zachariáš J, Žák K, Pudilová M, Snee LW (2013) Multiple fluid sources/pathways and severe thermal gradients during formation of the Jílové orogenic gold deposit, Bohemian Massif, Czech Republic. Ore Geol Rev 54:81–109

  111. Zachariáš J, Morávek P, Gadas P, Pertoldová J (2014) The Mokrsko-West gold deposit, Bohemian Massif, Czech Republic: mineralogy, deposit setting and classification. Ore Geol Rev 58:238–263

  112. Žák K, Ďurišová J, Strnad L, Goliáš V, Leach D, Snee LW, Viets J, Stein HJ (1998a) The evolution of pressure, temperature and composition of hydrothermal fluids in a regional shear zone during retrograde metamorphism, regional uplift, and cooling: the Kašperské Hory gold deposit case study (Bohemian Massif, Czech Republic). In: Vanko DA, Cline JS (eds) Pan-American Conference on Research on Fluid Inclusions, Program and Abstracts. Nevada Bureau of Mines and Geology, Las Vegas, p 73

  113. Žák K, Vlašimský P, Snee LW (1998b) Datování vybraných hornin příbramské rudní oblasti metodou 40Ar/39Ar a otázka stáří polymetalické hydrotermální mineralizace. Zprávy o Geol Výzkumech v roce 1997:172–173

  114. Žák J, Kratinová Z, Trubač J, Janoušek V, Sláma J, Mrlina J (2011a) Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Tepla-Barrandian unit, Bohemian Massif. Int J Earth Sci 100:1477–1495

  115. Žák J, Verner K, Finger F, Faryad SW, Chlupáčová M, Veselovský F (2011b) The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos 121:25–40

  116. Žák J, Verner K, Sláma J, Kachlík V, Chlupáčová M (2013) Multistage magma emplacement and progressive strain accumulation in the shallow-level Krkonoše-Jizera plutonic complex, Bohemian Massif. Tectonics 32:1493–1512

  117. Žák J, Verner K, Janoušek V, Holub FV, Kachlík V, Finger F, Hajná J, Tomek F, Vondrovic L, Trubač J (2014a) A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. Geol Soc London Spec Publ 405:169–196

  118. Žák K, Svojtka M, Breiter K, Ackerman L, Zachariáš J, Pašava J, Veselovský F, Litochleb J, Ďurišová J, Haluzová E (2014b) Padrt’ stock (Teplá-Barrandian Unit, Bohemian Massif): petrology, geochemistry, U-Pb zircon dating of granodiorite, and Re-Os age and origin of related molybdenite mineralization. J Geosci 59:351–366

  119. Zimmerman A, Stein HJ (2010) Common Os in molybdenite: how negligible is negligible? Goldschmidt Conference Abstracts: A1237

  120. Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundschau 86:571–584

Download references

Acknowledgments

This research was supported by the Czech Science Foundation (13-15390S to L.A. and J.P.). The Scientific Programme RVO67985831 of the Institute of Geology, The Czech Academy of Sciences, is also acknowledged. We are grateful to Jana Ďurišová (The Czech Academy of Sciences) for obtaining Re data using SF-ICP-MS; Vladislav Chrastný and Tomáš Magna (Czech Geological Survey) for the help with MC-ICP-MS measurements; Krystle Moore (University of Alberta) for the help in the lab; and Jana Rajlichová (The Czech Academy of Sciences) for the technical assistance. The reviews of Rolf Romer and an anonymous reviewer significantly helped to improve the manuscript.

Author information

Correspondence to Lukáš Ackerman.

Additional information

Editorial handling: R. Romer and B. Lehmann

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ackerman, L., Haluzová, E., Creaser, R.A. et al. Temporal evolution of mineralization events in the Bohemian Massif inferred from the Re–Os geochronology of molybdenite. Miner Deposita 52, 651–662 (2017). https://doi.org/10.1007/s00126-016-0685-5

Download citation

Keywords

  • Re–Os
  • Geochronology
  • Molybdenite
  • Bohemian Massif
  • Granite