Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Geochemistry and petrology of the indium-bearing polymetallic skarn ores at Pitkäranta, Ladoga Karelia, Russia

Abstract

The historic mining district of Pitkäranta in the Ladoga region, Fennoscandian Shield, was exploited for Fe, Cu, Zn, Pb, Sn and Ag in the nineteenth to twentieth centuries. The Pitkäranta region is dominated by Palaeoproterozoic supracrustal rocks, which, together with gneissic Archaean dome structures, constitute an allochthonous terrane complex that amalgamated to the Archaean continent during the Svecokarelian orogeny at 1.9–1.8 Ga. This crustal complex was intruded by 1.8 Ga Late orogenic granites, 1.54 Ga anorogenic rapakivi granites and 1.45 Ga dolerites. The polymetallic skarn ores of Pitkäranta extend over a 25-km-long zone in Palaeoproterozoic supracrustal rocks and formed from hydrothermal solutions, which emanated from the anorogenic rapakivi granites and reacted with marble layers. Four major ore types are recognised after the dominating metal: Fe, Cu, Sn and Zn, respectively. These types are not restricted to individual mines or mine fields but represent end members in zonation patterns within each ore body. Pitkäranta was the second discovery site in the world for indium but has been without modern documentation for more than 75 years. The indium contents in the ores are up to 600 ppm, in most cases sphalerite-hosted. The only roquesite-bearing sample in this study had an indium grade of 291 ppm and an In/Zn ratio of 51 (close to the criteria for the limiting conditions for creating an In-rich mineral). The Pitkäranta ores have a potential for future small-scale exploitation, but all such plans are hampered by high contents if Bi, Cd and As.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. ActlabLtd. (2015) Ultratrace 3 - Total Digestion - ICP and ICP/MS, INAA. http://www.actlabs.com/page.aspx?page=508&app=226&cat1=549&tp=12&lk=no&menu=64&print=yes. Accessed 3 Feb 2015

  2. Amelin YV, Beljaev A, Larin A, Neymark L, Stepanov K (1991) Salmi batholith and Pitkäranta ore field in Soviet Karelia. Rapakivi granites and related rocks symposium, IGCP Project 315, excursion volume, University of Helsinki

  3. Amelin YV, Larin AM, Tucker RD (1997) Chronology of multi-phase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution. Contrib Mineral Petrol 127:353–368

  4. Bettencourt JS, Tosdal RM, Leite WB, Payolla BL (1999) Mesoproterozoic rapakivi granites of the Rondonia Tin Province, southwestern border of the Amazonian craton, Brazil—I. Reconnaiscance U-Pb geochronology and regional implications. Precambrian Res 95:41–67

  5. Breithaupt JFA (1849) Die Paragenesis der Mineralien: Mineralogisch, geognostisch und chemisch beleuchtet, mit besonderer Rücksicht auf Bergbau. Freiberg

  6. Cook NJ, Sundblad K, Valkama M, Nygård R, Ciobanu CL, Danyushevsky L (2011) Indium mineralisation in A-type granites in southeastern Finland: insights into mineralogy and partitioning between coexisting minerals. Chem Geol 284:62–73

  7. Dill HG, Garrido MM, Melcher F, Gomez MC, Weber B, Luna LI, Bahr A (2013) Sulfidic and non-sulfidic indium mineralization of the epithermal Au-Cu-Zn-Pb-Ag deposit San Roque (Provincia Rio Negro, SE Argentina)—with special reference to the “indium window” in zinc sulphide. Ore Geol Rev 51:103–128

  8. Erämetsä O (1938) Über die Verbreitung des Indiums in Finnischen Mineralen und über seine Trennung von anderen Metallen, Ann Acad Scie Fenn A 51. Helsinki

  9. Eskola P (1948) The problem of mantled gneiss domes. Q J Geol Soc 104:461–476

  10. Eskola P (1951) Around Pitkäranta. Ann Acad Scie Fenn A Geol Geogr 27. Helsinki

  11. Fuhrmann (1810) Mineralogical description of some part of New and Old Finland. Min J St. Petersburg. In Russian

  12. Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precambrian Res 35:15–52

  13. Gadolin A (1856) Beobachtungen über einige Mineralien aus Pitkäranta in Finnland. Verhandlungen der Russischen Mineralogische Gesellschaft, St Petersburg

  14. von Groddeck A (1879) Die Lehre v. d. Lagerstätten der Erze. Leipzig

  15. Haapala I (1995) Metallogeny of the rapakivi granites. Mineral Petrol 54:149–160

  16. Isokangas P (1976) Suomen malmeista ja niiden etsimisestä. Geologi 28:1–9

  17. Jossa G (1834) News on tin and copper discoveries at Pitkäranta, Finland. Min J St. Petersburg IV, p. 157. In Russian

  18. Khazov RA (1973) Geological features of tin-mineralization in the Northern Ladoga district. Proc Acad Sci Karel filial 15. Petrozavodsk

  19. Laajoki K (2005) Karelian supracrustal rocks. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland—key to the evolution of the Fennoscandian Shield. Elsevier B.V, Amsterdam, pp 279–342

  20. Larin AM (1980) Pecularities in the zonality of the mineralization in the Pitkäranta ore district. Bull Moscow Naturalists, Geol. section. 55, no. 3, Moscow, pp. 73–82 in Russian

  21. Larin AM, Neymark LA, Gorochovskij BM, Ovchinnikova GV (1990) Link between complex skarn ores of Pitkäranta region and Salmi rapakivi granites: Pb isotope evidence. Geological series 5, Akad Nauk, SSSR, Moscow, pp. 47–57

  22. Lubnina V, Mertanen S, Söderlund U, Bogdanova S, Vasilieva T, Frank-Kamenetsky D (2010) A new key pole for the East European Craton at 1452 Ma: palaeomagnetic and geochronological constraints from mafic rocks in the Lake Ladoga region (Russian Karelia). Precambrian Res 183:442–462

  23. Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100th Anniversary volume: 299–336

  24. Murakami H, Ishihara S (2013) Trace elements of indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: a femto-second LA-ICPMS study. Ore Geol Rev 53:223–243

  25. Palmunen MK (1939) Pitkäranta: vv. 1934–1938 suoritettujen vuoriteknillisten tutkimusten valossa. Geological Survey of Finland. Geotechnical publications 44

  26. Park AF (1985) Accretion tectonism in the Proterozoic Svecokarelides of the Baltic Shield. Geology 13:725–729

  27. Park AF (1991) Continental growth by accretion: a tectonostratigrafic terrane analysis of the evolution of the western and central Baltic Shield, 2.50-1.75 Ga. Geol Soc Am Bull 103:522–537

  28. Puustinen K (2003) Suomen kaivosteollisuus ja mineraalisten raaka-aineiden tuotanto vuosina 1530–2001: historiallinen katsaus erityisesti tuotantolukujen valossa. Geological Survey of Finland

  29. Reich F, Richer T (1863a) Vörlaufige Notiz über ein neues Metall. J Prakt Chem 89:441–442

  30. Reich F, Richer T (1863b) Ueber das Indium. J Prakt Chem 90:172–176

  31. Saksela M (1948) Outokummun kuparimalmin löytö. Geological Survey of Finland. Geotechnical publications 47

  32. Saksela M (1951) Zur Mineralogie und Entstehung der Pitkäranta-Erze. Bull Comm Géol Finlande 154:182–230

  33. Seifert T, Sandmann D (2006) Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposit: implications for host minerals from the Freiberg district, eastern Erzgebirge, Germany. Ore Geol Rev 28:1–31

  34. Smirnov VI (ed) (1977) Ore deposit of the USSR, volume III. Pitman Publishing, London, pp 243–246

  35. Sundblad K (1991) Lead isotopic evidence for the orgin of 1.8-1.4 Ga ores and granitoids in the southeastern part of the Fennoscandian shield. Precambrian Res 51:265–281

  36. Trüstedt O (1904) Om Keliwaara nyupptäckta malmfält vid Ladoga. Teknikern 374:252–253

  37. Trüstedt O (1907) Die Erzlagerstätten von Pitkäranta am Ladoga-See. Bull Comm Géol Finlande no 19. Helsingfors

  38. Trüstedt O (1908) Bidrag till Pitkäranta malmfälts historik. Helsingfors tidnings och tryckeri-aktiebolagets tryckeri. Geotechnical publications 2. Geological Survey of Finland

  39. Törnebohm AE (1875): Geognostisk beskrifning öfver Persbergets grufvefält. Sveriges Geologiska Undersökning C14

  40. Törnebohm AE (1891) Om Pitkäranta malmfält och dess omgifningar. Geol Fören Stockholm Förh 13:313–334

  41. Valkama M (2009) An ore petrological and geochemical study of the polymetallic skarn ores at Pitkäranta, Ladoga, Karelia, Russia. MSc thesis, University of Turku

  42. Valkama M, Sundblad K, Nygård R, Cook NJ (2016) Mineralogy and geochemistry of indium-bearing polymetallic veins in the Sarvlaxviken area, Lovisa, Finland. Ore Geol Rev 75:206–219

  43. Vernadsky V (1910) Notes on the distribution of chemical elements in the Earth’s crust. Bull Acad Imp Sci Saint-Petersbourg VI Series, Tome IV, N 14:1129–1148. In Russian

  44. Wiik FJ (1880) Mineralog. meddel. Öfv. af Finska Vet.-Soc. Förh. XXII

  45. Wiik FJ (1882) Öfv. af Finska Vet.-Soc. Förh. XXIV No. 7:36–44

  46. Wiik FJ (1883) Öfv. af Finska Vet.-Soc. Förh. XXV No. 8:115

  47. Zebrikoff M (1863) Some words about copper and tin mining in Pitkäranta. Mar J T66:5. In Russian

Download references

Acknowledgments

Financial support for these investigations was received from the K.H. Renlund Foundation as well as University of Turku Graduate School—Doctoral Programme in Biology, Geography and Geology. The authors wish to thank Oleg Lavrov for enthusiastic assistance in the field work and Arto Peltola for technical support in the laboratory. We also wish to acknowledge the reviewers for their constructive comments on the manuscript.

Author information

Correspondence to M. Valkama.

Additional information

Editorial handling: T. Wagner

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Historic records of metal production from the Pitkäranta mines (compiled from Erämetsä 1938, Palmunen 1939, Khazov 1973, Puustinen 2003). The indium data were produced by Erämetsä (1938) with an average of eight samples for the Toivo deposit and an average of 54 samples for the Klee VI deposit (excluding samples from the wall rock and the sample with erroneous value of 5000 ppm In, cf. Discussion). Mineral abbreviations used in table; apy = arsenopyrite, bn = bornite, cct = chalcocite, ccp = chalcopyrite, cst = cassiterite, cv = covellite, fl = fluorite, gn = galena, gr = graphite, hem = hematite, mag = magnetite, mol = molybdenite, po = pyrrhotite, py = pyrite, sch = scheelite and sp = sphalerite. (XLSX 14.2 kb)

Table 2

Geochemical summary of the Pitkäranta ores. Coordinates are based on Finnish grid system zone IV. OMF = Old Mine Field, HOP = Hopunvaara, HBZ = Herberz, LUP = Lupikko, KEL = Kelivaara, HEP = Heposelkä. Data for samples SWAS 140A, 140B and 140C were generated from separate pieces of one and the same sample. Data for XK-1 968/08 and SWAS 141 were also generated from two separate pieces of the same rock sample. (XLS 79.5 kb)

Table 3

Observed minerals and their abundance in the studied samples. * = accessory, ** = moderately common, ***= dominant ore mineral. (XLSX 74.4 kb)

Table 4

Microprobe data for the unnamed Cu-Ag-Fe-S phase and chalcopyrite in sample SWAS 129. (XLSX 14.8 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valkama, M., Sundblad, K., Cook, N.J. et al. Geochemistry and petrology of the indium-bearing polymetallic skarn ores at Pitkäranta, Ladoga Karelia, Russia. Miner Deposita 51, 823–839 (2016). https://doi.org/10.1007/s00126-016-0641-4

Download citation

Keywords

  • Pitkäranta
  • Polymetallic
  • Indium
  • Skarn
  • Ore
  • Rapakivi