Advertisement

Mineralium Deposita

, Volume 51, Issue 1, pp 113–130 | Cite as

3D modelling of hydrothermal alteration associated with VHMS deposits in the Kristineberg area, Skellefte district, northern Sweden

  • Riia M. ChmielowskiEmail author
  • Nils Jansson
  • Mac Fjellerad Persson
  • Pia Fagerström
Article

Abstract

This contribution presents a 3D assessment of metamorphosed and deformed, hydrothermally altered volcanic rocks, hosting the massive sulphide deposits of the Kristineberg area in the 1.9 Ga Skellefte mining district in northern Sweden, using six calculated alteration parameters: the Ishikawa alteration index, the chlorite–carbonate–pyrite index and calculated net mass changes in MgO, SiO2, Na2O and Ba. The results, which are also available as film clips in the Supplementary data, confirm inferences from geological mapping; namely that the sericite- and chlorite-rich alteration zones have complex and cross-cutting geometries and that most of these zones are semi-regional in extent and range continuously from surface to over a kilometre deep. The major known massive sulphide deposits occur proximal to zones characterised by coincidence of high values for the alteration index and chlorite–carbonate–pyrite index and large MgO gains, which corresponds to zones rich in magnesian silicates. These zones are interpreted as the original chlorite-rich, proximal parts the alteration systems, and form anomalies extending up to 400 m away from the sulphide lenses. In addition, the stratigraphically highest VHMS are hosted by rocks rich in tremolite, talc, chlorite and dolomite with lesser clinozoisite, which have high chlorite–carbonate–pyrite index and low–medium alteration index values, reflecting a greater importance of some chlorite-carbonate alteration at this stratigraphic level. Vectoring towards massive sulphide deposits in this area can be improved by combining the AI and CCPI indexes with calculated mass changes for key mobile elements. Of the ones modelled in this study, MgO and SiO2 appear to be the most useful.

Keywords

3D model Lithogeochemistry VHMS deposits Mass change Kristineberg Skellefte district 

Notes

Acknowledgements

The project was undertaken by Luleå University of Technology with the support of Boliden Mines. We would like to express our appreciation to Pär Weihed, and Rodney Allen, who were instrumental in getting this collaboration underway. We thank the many geologists at Boliden who have, over the years, collected the drill core samples and lithogeochemical analyses, which formed an essential part of this study. We also thank the personnel at the Boliden core facility for retrieving from storage many historic drill holes for the new lithogeochemical sampling. Tim Barrett and Thomas Monecke provided thoughtful and comprehensive reviews, which considerably improved the quality of this manuscript. Additional thanks are due to Tim Barrett for his willingness to send helpful replies to queries sent him during all stages of this research project.

Supplementary material

ESM 1

(WMV 35.4 mb)

ESM 2

(WMV 36.6 mb)

ESM 3

(WMV 45.8 mb)

ESM 4

(WMV 42.0 mb)

ESM 5

(WMV 37.3 mb)

ESM 6

(WMV 50.7 mb)

References

  1. Allen RL, Weihed P, Svenson SA (1996) Setting of Zn–Cu–Au–Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte district, Sweden. Econ Geol 91(6):1022–1053CrossRefGoogle Scholar
  2. Årebäck H, Barrett TJ, Abrahamsson S, Fagerström P (2005) The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden, part I: geology. Mineral Deposita 40(4):351–367CrossRefGoogle Scholar
  3. Barrett TJ, MacLean WH, Årebäck H (2005) The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden. Part II: chemostratigraphy and alteration. Mineral Deposita 40(4):368–395CrossRefGoogle Scholar
  4. Bauer TE, Skyttä P, Allen RL, Weihed P (2011) Syn-extensional faulting controlling structural inversion—insights from the Palaeoproterozoic Vargfors syncline, Skellefte mining district, Sweden. Precambrian Res 191:166–183CrossRefGoogle Scholar
  5. Bauer TE, Skyttä P, Hermansson T, Allen RL, Weihed P (2014) Correlation between distribution and shape of VMS deposits and regional deformation patterns, Skellefte district, northern Sweden. Miner Deposita: 1–19Google Scholar
  6. Bergman Weihed J (2001) Palaeoproterozoic deformation zones in the Skellefte and the Arvidsjaur areas, northern Sweden. In: Weihed P (ed) Economic geology research 1. Sveriges Geologiska Undersökning C 833. pp 46–68Google Scholar
  7. Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum JE, Evans TR (2001) Reconstruction and representation of 3D objects with radial basis functions. In: SIGGRAPH Computer Graphics ProceedingGoogle Scholar
  8. Galley AG (1993) Characteristics of semi-conformable alteration zones associated with volcanogenic massive sulphide districts. J Geochem Explor 48(2):175–200CrossRefGoogle Scholar
  9. Galley AG, Bailes aH (1999) The interrelationship between the Vinterliden intrustion, synvolcanic alteration, and volcanogenic massive sulfide mineralization, Kristineberg Region, Skellefte District, Sweden (trans: Division E). CamiroGoogle Scholar
  10. Galley AG, Hannington M, Jonasson I (2007) Volcanogenic massive sulphide deposits. Mineral deposits of Canada: a synthesis of major deposit-types, district Metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication 5:141–161Google Scholar
  11. Goodfellow WD, McCutcheon SR, Peter JM (2003) Massive sulfide deposits of the Bathurst mining camp, New Brunswick, and northern Maine; introduction and summary of findings. Econ Geol Monogr 11:1–16Google Scholar
  12. Hannington MD, Galley AG, Herzig PM, Petersen S, Humphris SE, Miller DJ, Alt JC, Becker K, Brown D, Bruegmann GE, Chiba H, Fouquet Y, Gemmell JB, Guerin G, Holm NG, Honnorez JJ, Iturrino GJ, Knott R, Ludwig RJ, Nakamura K-i, Reysenbach A-L, Rona PA, Smith SE, Sturz AA, Tivey MK, Zhao X (1998) Comparison of the TAG mound and stockwork complex with cyprus-type massive sulfide deposits. Proc Ocean Drill Program Sci Results 158:389–415. doi: 10.2973/odp.proc.sr.158.217.1998 Google Scholar
  13. Hannington MD, Kjarsgaard IM, Galley AG, Taylor B (2003) Mineral–chemical studies of metamorphosed hydrothermal alteration in the Kristineberg volcanogenic massive sulfide district, Sweden. Mineral Deposita 38(4):423–442CrossRefGoogle Scholar
  14. Ishikawa Y, Sawaguchi T, Iwaya S, Horiuchi M (1976) Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos. Min Geol 26:105–117Google Scholar
  15. Jansson N, Hermansson T, Fjellerad Persson M, Berglund A, Kruuna A, Skyttä P, Bachmann K, Gutzmer J, Chmielowski RM, Weihed P (2013) Recent advances in structural geology, lithogeochemistry and exploration for VHMS deposits, Kristineberg area, Skellefte District, Sweden. In: 12th SGA Biennial Meeting, Uppsala, Sweden, 12–15 AugustGoogle Scholar
  16. Kathol B, Weihed P (2005) Description of regional geological and geophysical maps of the Skellefte District and surrounding areas. Geological Survey of SwedenGoogle Scholar
  17. Kathol B, Weihed P, Antal Lundin I, Bark G, Bergman WJ, Bergström U, Billström K, Björk L, Claesson L, Daniels J, Eliasson T, Frumerie M, Kero L, Kumpulainen RA, Lundström H, Lundström I, Mellqvist C, Petersson J, Skiöld T, Sträng T, Stølen L-K, Söderman J, Triumf C-A, Wikström A, Wikström T, Årebäck H (2005) Regional geological and geophysical maps of the Skellefte district and surrounding areas. Sver Geol Unders Ba 57:1Google Scholar
  18. Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol Bull Soc Econ Geol 82(7):1898–1911. doi: 10.2113/gsecongeo.82.7.1898 CrossRefGoogle Scholar
  19. Large RR, Gemmell JB, Paulick H (2001a) The alternation box plot: a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Econ Geol 96(5):957–971Google Scholar
  20. Large RR, McPhie J, Gemmell JB, Herrmann W, Davidson GJ (2001b) The spectrum of ore deposit types, volcanic environments, alteration halos, and related exploration vectors in submarine volcanic successions: some examples from Australia. Econ Geol 96(5):913–938Google Scholar
  21. Li XC, Fan HR, Santosh M, Hu FF, Yang KF, Lan TG (2013) Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China. Ore Geol Rev 53:403–421CrossRefGoogle Scholar
  22. Lotfolah Hamedani M, Plimer IR, Xu C (2012) Orebody modelling for exploration: the Western mineralisation, Broken Hill, NSW. Nat Resour Res: 1–21Google Scholar
  23. MacLean W, Barrett T (1993) Lithogeochemical techniques using immobile elements. J Geochem Explor 48:109–133CrossRefGoogle Scholar
  24. Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits; the Kuroko perspective. Ore Geol Rev 10(3-6):135–177. doi: 10.1016/0169-1368(95)00021-6 CrossRefGoogle Scholar
  25. Sangster DF (1972) Precambrian volcanogenic massive sulphide deposits in Canada; a review. Pap Geol Surv Can 72–22:44Google Scholar
  26. Schlatter DM (2007) Volcanic stratigraphy and hydrothermal alteration of the Petiknäs South Zn–Pb–Cu–Au–Ag volcanic-hosted massive sulfide deposit. Luleå University of Technology, LuleåGoogle Scholar
  27. Schlatter DM, Barrett T, Abrahamsson S (2003) Chemostratigraphy of metamorphosed and altered Paleoproterozoic volcanic rocks associated with massive sulfide deposits at Rävliden and Kristineberg West, Skellefte district, Sweden. In: Eliopoulos DG (ed) Mineral exploration and sustainable development: proceedings of the Seventh Biennial SGA Meeting, Athens, Greece, 24–28 August 2003. pp 1103–1106Google Scholar
  28. Schlatter DM, Barrett T, Allen RL (2006) Mass changes in alteration zones of the Petiknäs South volcanic-hosted massive sulfide deposit, Skellefte district, Sweden. Paper presented at the 27th Nordic Geological Winter Meeting, January 9–12, 2006, Oulu, FinlandGoogle Scholar
  29. Skyttä P (2012) Crustal evolution of an ore district illustrated—4D-animation from the Skellefte district, Sweden. Comput Geosci 48:157–161. doi: 10.1016/j.cageo.2012.05.029 CrossRefGoogle Scholar
  30. Skyttä P, Hermansson T, Andersson J, Whitehouse M, Weihed P (2011) New zircon data supporting models of short-lived igneous activity at 1.89 Ga in the western Skellefte District, central Fennoscandian Shield. Solid Earth 2(2):205–217. doi: 10.1016/j.precamres.2011.09.014 CrossRefGoogle Scholar
  31. Skyttä P, Bauer TE, Tavakoli S, Hermansson T, Andersson J, Weihed P (2012) Pre-1.87 Ga development of crustal domains overprinted by 1.87 Ga transpression in the Palaeoproterozoic Skellefte district, Sweden. Precambrian Res 206–207:109–136. doi: 10.1016/j.precamres.2012.02.022 CrossRefGoogle Scholar
  32. Skyttä P, Bauer T, Hermansson T, Dehghannejad M, Juhlin C, Juanatey MG, Hübert J, Weihed P (2013) Crustal 3D-geometry of the Kristineberg area (Sweden) with implication on VMS deposits. Solid Earth 4:387–404. doi: 10.5194/se-4-387-2013 CrossRefGoogle Scholar
  33. Zuo R, Cheng Q, Xia Q (2009) Application of fractal models to characterization of vertical distribution of geochemical element concentration. J Geochem Explor 102(1):37–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Riia M. Chmielowski
    • 1
    Email author
  • Nils Jansson
    • 2
  • Mac Fjellerad Persson
    • 2
  • Pia Fagerström
    • 2
  1. 1.Department of Civil, Environmental and Natural Resources Engineering, Division of GeosciencesLuleå University of TechnologyLuleåSweden
  2. 2.Boliden Mines, Exploration DepartmentProspekteringenBoliden

Personalised recommendations