, Volume 62, Issue 7, pp 1237–1250 | Cite as

In vivo imaging of type 1 diabetes immunopathology using eye-transplanted islets in NOD mice

  • Midhat H. AbdulredaEmail author
  • R. Damaris Molano
  • Gaetano Faleo
  • Maite Lopez-Cabezas
  • Alexander Shishido
  • Ulisse Ulissi
  • Carmen Fotino
  • Luis F. Hernandez
  • Ashley Tschiggfrie
  • Virginia R. Aldrich
  • Alejandro Tamayo-Garcia
  • Allison S. Bayer
  • Camillo Ricordi
  • Alejandro Caicedo
  • Peter BuchwaldEmail author
  • Antonello PileggiEmail author
  • Per-Olof BerggrenEmail author



Autoimmune attack against the insulin-producing beta cells in the pancreatic islets results in type 1 diabetes. However, despite considerable research, details of the type 1 diabetes immunopathology in situ are not fully understood mainly because of difficult access to the pancreatic islets in vivo.


Here, we used direct non-invasive confocal imaging of islets transplanted in the anterior chamber of the eye (ACE) to investigate the anti-islet autoimmunity in NOD mice before, during and after diabetes onset. ACE-transplanted islets allowed longitudinal studies of the autoimmune attack against islets and revealed the infiltration kinetics and in situ motility dynamics of fluorescence-labelled autoreactive T cells during diabetes development. Ex vivo immunostaining was also used to compare immune cell infiltrations into islet grafts in the eye and kidney as well as in pancreatic islets of the same diabetic NOD mice.


We found similar immune infiltration in native pancreatic and ACE-transplanted islets, which established the ACE-transplanted islets as reliable reporters of the autoimmune response. Longitudinal studies in ACE-transplanted islets identified in vivo hallmarks of islet inflammation that concurred with early immune infiltration of the islets and preceded their collapse and hyperglycaemia onset. A model incorporating data on ACE-transplanted islet degranulation and swelling allowed early prediction of the autoimmune attack in the pancreas and prompted treatments to intercept type 1 diabetes.


The current findings highlight the value of ACE-transplanted islets in studying early type 1 diabetes pathogenesis in vivo and underscore the need for timely intervention to halt disease progression.


Anterior chamber of the eye Autoimmune diabetes Diabetes recurrence Diabetes transfer Immune modulation Intraocular transplantation Islet degranulation Islet inflammation Islet swelling Local intervention NOD mice Non-invasive longitudinal intravital imaging Pancreatic islet transplant Prediction of type 1 diabetes Predictive mathematical model 



Anterior chamber of the eye




Islet equivalents


In vivo immunocytolabelling


Median fluorescence intensity


Median time to hyperglycaemia


Positron emission tomography



The authors are grateful to R. Rodriguez-Diaz (DRI, University of Miami, USA) and I. Leibiger (The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden) for fruitful discussion of the manuscript. Special thanks go to E. Zahar-Akrawi, J. Gimeno and Y. Gadea (DRI Translational Core, University of Miami, USA), O. Umland (DRI Flow Cytometry Core, University of Miami, USA) and K. Johnson (DRI Histology Core, University of Miami, USA) for outstanding technical assistance.

Contribution statement

MHA, RDM and AP conceived and designed the study, conducted experiments, analysed and interpreted data and wrote the manuscript. GF, ASB and CF planned experiments, analysed and interpreted data and edited the manuscript. MLC, UU, CF, AS, LFH, AT, VA and AT-G, conducted experiments, collected data and proof-read the manuscript. PB planned experiments, analysed and interpreted data, developed the mathematical model and wrote the manuscript. CR contributed to discussion and advice on experimental design and reviewed the manuscript. AC and P-OB conceived the study, designed experiments, interpreted data and edited the manuscript. All authors approved the version of the manuscript to be published. MHA, RDM, PB, AP and P-OB are the guarantors of this work. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies. This article was prepared while AP was employed at the University of Miami. He is currently employed at NIH/Center for Scientific Review. The opinions expressed in this article are the authors’ own and do not reflect the view of the NIH, the Department of Health and Human Services or the United States government.


This work was supported by funds from the Diabetes Research Institute Foundation (DRIF; to MHA, AC, PB, P-OB and AP), Diabetes Research & Wellness Foundation and Diabetes Wellness Sverige (to MHA and P-OB), the National Institutes of Health (NIH), the National Institute of Allergy and Infectious Diseases (NIAID) - Cooperative Study Group for Autoimmune Disease Prevention U19AI050864 (to AP), R56AI130330 (to MHA), the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) R03DK075487 (to AC), R01DK084321 (to AC), UC4DK116241/K01DK097194/ F32DK083226 (to MHA); the Juvenile Diabetes Research Foundation International (JDRF) 4-2004-361 (to AC, P-OB and AP) and 4-2008-811 and 17-2010-5 (to AP). Additional support to P-OB was received from the Swedish Diabetes Association Fund, the Swedish Research Council, Novo Nordisk Foundation, the Family Erling-Persson Foundation, Strategic Research Program in Diabetes at Karolinska Institutet, the European Research Council (ERC)-2013-AdG 338936-BetaImage, the Family Knut and Alice Wallenberg Foundation, Skandia Insurance Company Ltd., Diabetes and Wellness Foundation, the Bert von Kantzow Foundation and the Stichting af Jochnick Foundation.

Duality of interest

P-OB is cofounder and CEO of Biocrine, an unlisted biotech company that is using the ACE technique as a research tool. MHA is consultant for the same company. All other authors declare that there is no duality of interest associated with their contribution to this manuscript.

Supplementary material

125_2019_4879_MOESM1_ESM.pdf (1.9 mb)
ESM (PDF 1913 kb)
125_2019_4879_MOESM3_ESM.mp4 (1.8 mb)
ESM Video 1 Longitudinal changes in islet granularity, volume, and immune infiltration before, during and after onset of diabetes. This video shows 3D renderings of the same ACE-transplanted NOD.Rag−/− islet engrafted on the iris (both shown in grey) during type 1 diabetes progression in a NOD-Rag−/− recipient mouse that was reconstituted with diabetogenic GFP-splenocytes (green) by adoptive transfer ~35 days before onset of hyperglycaemia (also see ESM Fig. 3a, b). The 3D renderings are rotated to show the magnitude of the immune infiltration and the associated morphological changes in the islet (degranulation and swelling) at the various stages during type 1 diabetes progression (MP4 1.75 mb)


  1. 1.
    Donath MY, Hess C, Palmer E (2014) What is the role of autoimmunity in type 1 diabetes? A clinical perspective. Diabetologia 57(4):653–655. CrossRefPubMedGoogle Scholar
  2. 2.
    Skyler JS (2018) Hope vs hype: where are we in type 1 diabetes? Diabetologia 61(3):509–516. CrossRefPubMedGoogle Scholar
  3. 3.
    Pugliese A (2014) Advances in the etiology and mechanisms of type 1 diabetes. Discov Med 18(98):141–150PubMedGoogle Scholar
  4. 4.
    Masedunskas A, Milberg O, Porat-Shliom N et al (2012) Intravital microscopy: a practical guide on imaging intracellular structures in live animals. Bioarchitecture 2(5):143–157. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fotino C, Molano RD, Ricordi C, Pileggi A (2013) Transdisciplinary approach to restore pancreatic islet function. Immunol Res 57(1–3):210–221. CrossRefPubMedGoogle Scholar
  6. 6.
    Germain RN, Robey EA, Cahalan MD (2012) A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336(6089):1676–1681. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Miska J, Abdulreda MH, Devarajan P et al (2014) Real-time immune cell interactions in target tissue during autoimmune-induced damage and graft tolerance. J Exp Med 211(3):441–456. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Abdulreda MH, Faleo G, Molano RD et al (2011) High-resolution, noninvasive longitudinal live imaging of immune responses. Proc Natl Acad Sci U S A 108(31):12863–12868. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chmelova H, Cohrs CM, Chouinard JA et al (2015) Distinct roles of β-cell mass and function during type 1 diabetes onset and remission. Diabetes 64(6):2148–2160. CrossRefPubMedGoogle Scholar
  10. 10.
    Fan Z, Spencer JA, Lu Y et al (2010) In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response. Nat Med 16(6):718–722. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Coppieters K, Martinic MM, Kiosses WB, Amirian N, von Herrath M (2010) A novel technique for the in vivo imaging of autoimmune diabetes development in the pancreas by two-photon microscopy. PLoS One 5(12):e15732. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Coppieters K, Amirian N, von Herrath M (2012) Intravital imaging of CTLs killing islet cells in diabetic mice. J Clin Invest 122(1):119–131. CrossRefPubMedGoogle Scholar
  13. 13.
    Bertera S, Geng X, Tawadrous Z et al (2003) Body window-enabled in vivo multicolor imaging of transplanted mouse islets expressing an insulin-timer fusion protein. Biotechniques 35(4):718–722. CrossRefPubMedGoogle Scholar
  14. 14.
    Sabek O, Gaber MW, Wilson CM, Zawaski JA, Fraga DW, Gaber O (2010) Imaging of human islet vascularization using a dorsal window model. Transplant Proc 42(6):2112–2114. CrossRefPubMedGoogle Scholar
  15. 15.
    Takahashi Y, Takebe T, Enomura M et al (2014) High-resolution intravital imaging for monitoring the transplanted islets in mice. Transplant Proc 46(4):1166–1168. CrossRefPubMedGoogle Scholar
  16. 16.
    Krishnan R, Arora RP, Alexander M et al (2014) Noninvasive evaluation of the vascular response to transplantation of alginate encapsulated islets using the dorsal skin-fold model. Biomaterials 35(3):891–898. CrossRefPubMedGoogle Scholar
  17. 17.
    Benson RA, Garcon F, Recino A et al (2018) Non-invasive multiphoton imaging of islets transplanted into the pinna of the NOD mouse ear reveals the immediate effect of anti-CD3 treatment in autoimmune diabetes. Front Immunol 9:1006. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Abdulreda MH, Caicedo A, Berggren P-O (2013) Transplantation into the anterior chamber of the eye for longitudinal, non-invasive in vivo imaging with single-cell resolution in real-time. J Vis Exp (73):e50466.
  19. 19.
    Faleo G, Berggren PO, Pileggi A (2014) Intravital imaging of cytotoxic T lymphocytes. Methods Mol Biol 1186:121–129. CrossRefPubMedGoogle Scholar
  20. 20.
    Wallet MA, Flores RR, Wang Y et al (2009) MerTK regulates thymic selection of autoreactive T cells. Proc Natl Acad Sci U S A 106(12):4810–4815. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chatenoud L, Primo J, Bach JF (1997) CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 158(6):2947–2954PubMedGoogle Scholar
  22. 22.
    Chatenoud L, Thervet E, Primo J, Bach JF (1994) Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci U S A 91(1):123–127. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pileggi A, Molano RD, Berney T et al (2001) Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. Diabetes 50(9):1983–1991. CrossRefPubMedGoogle Scholar
  24. 24.
    Faleo G, Fotino C, Bocca N et al (2012) Prevention of autoimmune diabetes and induction of beta-cell proliferation in NOD mice by hyperbaric oxygen therapy. Diabetes 61(7):1769–1778. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Molano RD, Pileggi A, Berney T et al (2003) Prolonged islet allograft survival in diabetic NOD mice by targeting CD45RB and CD154. Diabetes 52(4):957–964. CrossRefPubMedGoogle Scholar
  26. 26.
    Molano RD, Berney T, Li H et al (2001) Prolonged islet graft survival in NOD mice by blockade of the CD40-CD154 pathway of T-cell costimulation. Diabetes 50(2):270–276. CrossRefPubMedGoogle Scholar
  27. 27.
    Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98(5):335–344. CrossRefPubMedGoogle Scholar
  28. 28.
    Jayaprasad K, Mathew J, Thankappan K et al (2013) Safety and efficacy of low molecular weight dextran (dextran 40) in head and neck free flap reconstruction. J Reconstr Microsurg 29(7):443–448. CrossRefPubMedGoogle Scholar
  29. 29.
    Zahr E, Molano RD, Pileggi A et al (2007) Rapamycin impairs in vivo proliferation of islet beta-cells. Transplantation 84(12):1576–1583. CrossRefPubMedGoogle Scholar
  30. 30.
    Chen Y, Chong MM, Darwiche R, Thomas HE, Kay TW (2004) Severe pancreatitis with exocrine destruction and increased islet neogenesis in mice with suppressor of cytokine signaling-1 deficiency. Am J Pathol 165(3):913–921. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Daifotis AG, Koenig S, Chatenoud L, Herold KC (2013) Anti-CD3 clinical trials in type 1 diabetes mellitus. Clin Immunol 149(3):268–278. CrossRefPubMedGoogle Scholar
  32. 32.
    Wan X, Guloglu FB, Vanmorlan AM et al (2013) Recovery from overt type 1 diabetes ensues when immune tolerance and beta-cell formation are coupled with regeneration of endothelial cells in the pancreatic islets. Diabetes 62(8):2879–2889. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bodor N, Buchwald P (2000) Soft drug design: general principles and recent applications. Med Res Rev 20(1):58–101.<58::AID-MED3>3.0.CO;2-X CrossRefPubMedGoogle Scholar
  34. 34.
    Bodor N, Buchwald P (2006) Corticosteroid design for the treatment of asthma: structural insights and the therapeutic potential of soft corticosteroids. Curr Pharm Des 12(25):3241–3260. CrossRefPubMedGoogle Scholar
  35. 35.
    Buchwald P, Bocca N, Marzorati S et al (2010) Feasibility of localized immunosuppression: 1. Exploratory studies with glucocorticoids in a biohybrid device designed for cell transplantation. Pharmazie 65(6):421–428PubMedGoogle Scholar
  36. 36.
    Nyqvist D, Speier S, Rodriguez-Diaz R et al (2011) Donor islet endothelial cells in pancreatic islet revascularization. Diabetes 60(10):2571–2577. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rodriguez-Diaz R, Speier S, Molano RD et al (2012) Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function. Proc Natl Acad Sci U S A 109(52):21456–21461. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ilegems E, Dicker A, Speier S et al (2013) Reporter islets in the eye reveal the plasticity of the endocrine pancreas. Proc Natl Acad Sci U S A 110(51):20581–20586. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Almaca J, Molina J, Arrojo EDR et al (2014) Young capillary vessels rejuvenate aged pancreatic islets. Proc Natl Acad Sci U S A 111(49):17612–17617. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Abdulreda MH, Berggren PO (2013) Islet inflammation in plain sight. Diabetes Obes Metab 15(Suppl 3):105–116. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Avall K, Ali Y, Leibiger IB et al (2015) Apolipoprotein CIII links islet insulin resistance to beta-cell failure in diabetes. Proc Natl Acad Sci U S A 112(20):E2611–E2619. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ilegems E, van Krieken PP, Edlund PK et al (2015) Light scattering as an intrinsic indicator for pancreatic islet cell mass and secretion. Sci Rep 5(1):10740. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Abdulreda MH, Rodriguez-Diaz R, Caicedo A, Berggren PO (2016) Liraglutide compromises pancreatic beta cell function in a humanized mouse model. Cell Metab 23(3):541–546. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ali Y, Diez J, Selander L, Zheng X, Edlund H, Berggren PO (2016) The anterior chamber of the eye is a transplantation site that supports and enables visualisation of beta cell development in mice. Diabetologia. 59(5):1007–1011. CrossRefPubMedGoogle Scholar
  45. 45.
    Diez JA, Arrojo EDR, Zheng X et al (2017) Pancreatic islet blood flow dynamics in primates. Cell Rep 20(6):1490–1501. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rodriguez-Diaz R, Molano RD, Weitz JR et al (2018) Paracrine interactions within the pancreatic islet determine the glycemic set point. Cell Metab 27(3):549–558 e544. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mojibian M, Harder B, Hurlburt A, Bruin JE, Asadi A, Kieffer TJ (2013) Implanted islets in the anterior chamber of the eye are prone to autoimmune attack in a mouse model of diabetes. Diabetologia 56(10):2213–2221. CrossRefPubMedGoogle Scholar
  48. 48.
    Schmidt-Christensen A, Hansen L, Ilegems E et al (2013) Imaging dynamics of CD11c+ cells and Foxp3+ cells in progressive autoimmune insulitis in the NOD mouse model of type 1 diabetes. Diabetologia 56(12):2669–2678. CrossRefPubMedGoogle Scholar
  49. 49.
    Berclaz C, Schmidt-Christensen A, Szlag D et al (2016) Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging. Diabetologia 59(3):550–559. CrossRefPubMedGoogle Scholar
  50. 50.
    Pileggi AAM, Faleo G, Molano RD, Ricordi C, Caicedo A, Berggren P-O (2012) The anterior chamber of the eye allows longitudinal, intravital imaging of CTLs to study islet immunobiology [Eletter]. J Clin Invest.
  51. 51.
    Shishido A, Caicedo A, Rodriguez-Diaz R, Pileggi A, Berggren P-O, Abdulreda MH (2016) Clinical intraocular islet transplantation is not a number issue. CellR4 Repair Replace Regen Reprogram 4(4):e2120PubMedPubMedCentralGoogle Scholar
  52. 52.
    Viret C, Mahiddine K, Baker RL, Haskins K, Guerder S (2015) The T cell repertoire-diversifying enzyme TSSP contributes to thymic selection of diabetogenic CD4 T cell specificities reactive to ChgA and IAPP autoantigens. J Immunol 195(5):1964–1973. CrossRefPubMedGoogle Scholar
  53. 53.
    Egawa G, Nakamizo S, Natsuaki Y, Doi H, Miyachi Y, Kabashima K (2013) Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep 3(1):1932. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ono S, Egawa G, Kabashima K (2017) Regulation of blood vascular permeability in the skin. Inflamm Regen 37(1):11. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Denis MC, Mahmood U, Benoist C, Mathis D, Weissleder R (2004) Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc Natl Acad Sci U S A 101(34):12634–12639. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Turvey SE, Swart E, Denis MC et al (2005) Noninvasive imaging of pancreatic inflammation and its reversal in type 1 diabetes. J Clin Invest 115(9):2454–2461. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gaglia JL, Guimaraes AR, Harisinghani M et al (2011) Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest 121(1):442–445. CrossRefPubMedGoogle Scholar
  58. 58.
    Gaglia JL, Harisinghani M, Aganj I et al (2015) Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proc Natl Acad Sci U S A 112(7):2139–2144. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Vendrame F, Pileggi A, Laughlin E et al (2010) Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes 59(4):947–957. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Azzi J, Geara AS, El-Sayegh S, Abdi R (2010) Immunological aspects of pancreatic islet cell transplantation. Expert Rev Clin Immunol 6(1):111–124. CrossRefPubMedGoogle Scholar
  61. 61.
    Bocca N, Pileggi A, Molano RD et al (2008) Soft corticosteroids for local immunosuppression: exploring the possibility for the use of loteprednol etabonate for islet transplantation. Pharmazie 63(3):226–232PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Midhat H. Abdulreda
    • 1
    • 2
    • 3
    • 4
    Email author
  • R. Damaris Molano
    • 1
  • Gaetano Faleo
    • 1
  • Maite Lopez-Cabezas
    • 1
  • Alexander Shishido
    • 1
  • Ulisse Ulissi
    • 1
  • Carmen Fotino
    • 1
  • Luis F. Hernandez
    • 1
  • Ashley Tschiggfrie
    • 1
  • Virginia R. Aldrich
    • 1
  • Alejandro Tamayo-Garcia
    • 1
    • 5
  • Allison S. Bayer
    • 1
    • 3
  • Camillo Ricordi
    • 1
    • 2
    • 3
    • 6
    • 7
  • Alejandro Caicedo
    • 5
  • Peter Buchwald
    • 1
    • 8
    Email author
  • Antonello Pileggi
    • 1
    • 2
    • 3
    • 6
    • 9
    Email author
  • Per-Olof Berggren
    • 1
    • 2
    • 7
    • 10
    Email author
  1. 1.Diabetes Research Institute and Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Department of SurgeryUniversity of Miami Miller School of MedicineMiamiUSA
  3. 3.Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiUSA
  4. 4.Department of OphthalmologyUniversity of Miami Miller School of MedicineMiamiUSA
  5. 5.Department of MedicineUniversity of Miami Miller School of MedicineMiamiUSA
  6. 6.Department of Biomedical EngineeringUniversity of MiamiCoral GablesUSA
  7. 7.Diabetes Research Institute FederationHollywoodUSA
  8. 8.Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiUSA
  9. 9.Center for Scientific ReviewNational Institutes of HealthBethesdaUSA
  10. 10.The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska InstitutetKarolinska University Hospital L1StockholmSweden

Personalised recommendations