Advertisement

A future for CD3 antibodies in immunotherapy of type 1 diabetes

  • Lucienne ChatenoudEmail author
Commentary

More than 30 years have passed since the first immunotherapy trials in autoimmune insulin-dependent type 1 diabetes were conducted [1]. At this time, it was already apparent, given the compelling observations of the central role of CD4 and CD8 autoreactive T cells in the destruction of insulin-secreting beta-cells, that the immune system of patients would be the most effective drug target, though few tools were available. Small molecule immunosuppressants, such as ciclosporin, were transforming treatment of organ transplant rejection as they proved to be more effective than the conventional therapies, corticosteroids and azathioprine. Based on these observations, ciclosporin was tested in patients with recently diagnosed type 1 diabetes. The results of these first trials provided a fundamental proof-of-concept: that it was possible to effectively treat patients with established hyperglycaemia because, contrary to the prevailing dogma, even after disease diagnosis, a significant mass...

Keywords

Autoimmune diabetes CD3 monoclonal antibodies Immunotherapy T lymphocytes Teplizumab Type 1 diabetes 

Abbreviations

AbATE

Autoimmunity-Blocking Antibody for Tolerance

MMTT

Mixed-meal tolerance test

PD-1

Programmed cell death 1

Notes

Contribution statement

The author was the sole contributor to this paper.

Duality of interest

The author has received an honorarium from Provention Bio.

References

  1. 1.
    Bach JF, Chatenoud L (2011) A historical view from thirty eventful years of immunotherapy in autoimmune diabetes. Semin Immunol 23(3):174–181.  https://doi.org/10.1016/j.smim.2011.07.009 CrossRefPubMedGoogle Scholar
  2. 2.
    Assan R, Feutren G, Debray-sachs M et al (1985) Metabolic and immunological effects of cyclosporin in recently diagnosed type 1 diabetes mellitus. Lancet 1(8420):67–71CrossRefGoogle Scholar
  3. 3.
    Stiller CR, Dupre J, Gent M et al (1984) Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset. Science 223(4643):1362–1367.  https://doi.org/10.1126/science.6367043 CrossRefPubMedGoogle Scholar
  4. 4.
    The Canadian-European Randomized Control Trial Group (1988) Cyclosporin-induced remission of IDDM after early intervention. Association of 1 yr of cyclosporin treatment with enhanced insulin secretion. Diabetes 37(11):1574–1582.  https://doi.org/10.2337/diab.37.11.1574 CrossRefGoogle Scholar
  5. 5.
    Tian J, Atkinson MA, Clare Salzler M et al (1996) Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J Exp Med 183(4):1561–1567.  https://doi.org/10.1084/jem.183.4.1561 CrossRefPubMedGoogle Scholar
  6. 6.
    Tisch R, Wang B, Serreze DV (1999) Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J Immunol 163:1178–1187PubMedGoogle Scholar
  7. 7.
    Chatenoud L, Thervet E, Primo J et al (1994) Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci U S A 91(1):123–127.  https://doi.org/10.1073/pnas.91.1.123 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chatenoud L, Primo J, Bach JF (1997) CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 158:2947–2954PubMedGoogle Scholar
  9. 9.
    Belghith M, Bluestone JA, Barriot S et al (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9(9):1202–1208.  https://doi.org/10.1038/nm924 CrossRefPubMedGoogle Scholar
  10. 10.
    Chatenoud L, Bluestone JA (2007) CD3-specific antibodies : a portal to the treatment of autoimmunity. Nat Rev Immunol 7(8):622–632.  https://doi.org/10.1038/nri2134 CrossRefPubMedGoogle Scholar
  11. 11.
    Nanto-Salonen K, Kupila A, Simell S et al (2008) Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet 372(9651):1746–1755.  https://doi.org/10.1016/S0140-6736(08)61309-4 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Skyler J (2002) Effects of insulin in relatives of patients with type 1 diabetes mellitus Diabetes Prevention Trial-Type 1 Diabetes Study Group. N Engl J Med 346:1685–1691CrossRefGoogle Scholar
  13. 13.
    Krischer JP, Schatz DA, Bundy B et al (2017) Effect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: a randomized clinical trial. JAMA 318(19):1891–1902.  https://doi.org/10.1001/jama.2017.17070 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ludvigsson J, Krisky D, Casas R et al (2012) GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N Engl J Med 366(5):433–442.  https://doi.org/10.1056/NEJMoa1107096 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wherrett DK, Bundy B, Becker DJ et al (2011) Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet 378(9788):319–327.  https://doi.org/10.1016/S0140-6736(11)60895-7 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rigby MR, Harris KM, Pinckney A et al (2015) Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest 125(8):3285–3296.  https://doi.org/10.1172/JCI81722 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gitelman SE, Gottlieb PA, Felner EI et al (2016) Antithymocyte globulin therapy for patients with recent-onset type 1 diabetes: 2 year results of a randomised trial. Diabetologia 59(6):1153–1161.  https://doi.org/10.1007/s00125-016-3917-4 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Herold KC, Gitelman SE, Masharani U et al (2005) A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54(6):1763–1769.  https://doi.org/10.2337/diabetes.54.6.1763 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Herold KC, Hagopian W, Auger JA et al (2002) Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 346(22):1692–1698.  https://doi.org/10.1056/NEJMoa012864 CrossRefPubMedGoogle Scholar
  20. 20.
    Keymeulen B, Vandemeulebroucke E, Ziegler AG et al (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352(25):2598–2608.  https://doi.org/10.1056/NEJMoa043980 CrossRefPubMedGoogle Scholar
  21. 21.
    Keymeulen B, Walter M, Mathieu C et al (2010) Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia 53(4):614–623.  https://doi.org/10.1007/s00125-009-1644-9 CrossRefPubMedGoogle Scholar
  22. 22.
    Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H et al (2009) Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 361(22):2143–2152.  https://doi.org/10.1056/NEJMoa0904452 CrossRefPubMedGoogle Scholar
  23. 23.
    Orban T, Bundy B, Becker DJ et al (2011) Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378(9789):412–419.  https://doi.org/10.1016/S0140-6736(11)60886-6 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Orban T, Bundy B, Becker DJ et al (2014) Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care 37(4):1069–1075.  https://doi.org/10.2337/dc13-0604 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Herold KC, Gitelman SE, Ehlers MR et al (2013) Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 62(11):3766–3774.  https://doi.org/10.2337/db13-0345 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sherry N, Hagopian W, Ludvigsson J et al (2011) Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial. Lancet 378:412–419CrossRefGoogle Scholar
  27. 27.
    Perdigoto AL, Preston-Hurlburt P, Clark P et al (2018) Treatment of type 1 diabetes with teplizumab: clinical and immunological follow-up after 7 years from diagnosis. Diabetologia.  https://doi.org/10.1007/s00125-018-4786-9
  28. 28.
    Long SA, Thorpe J, DeBerg HA et al (2016) Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes. Sci Immunol 1(5):eaai7793.  https://doi.org/10.1126/sciimmunol.aai7793 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Long SA, Thorpe J, Herold KC et al (2017) Remodeling T cell compartments during anti-CD3 immunotherapy of type 1 diabetes. Cell Immunol 319:3–9.  https://doi.org/10.1016/j.cellimm.2017.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tooley JE, Vudattu N, Choi J et al (2016) Changes in T-cell subsets identify responders to FcR-nonbinding anti-CD3 mAb (teplizumab) in patients with type 1 diabetes. Eur J Immunol 46(1):230–241.  https://doi.org/10.1002/eji.201545708 CrossRefPubMedGoogle Scholar
  31. 31.
    Fife BT, Guleria I, Gubbels Bupp M et al (2006) Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. J Exp Med 203(12):2737–2747.  https://doi.org/10.1084/jem.20061577 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Baas M, Besançon A, Goncalves T et al (2016) TGFβ-dependent expression of PD-1 and PD-L1 controls CD8+ T cell anergy in transplant tolerance. Elife 5:e08133.  https://doi.org/10.7554/eLife.08133 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Besançon A, Baas M, Goncalves T et al (2017) The induction and maintenance of transplant tolerance engages both regulatory and anergic CD4+ T cells. Front Immunol 8:218CrossRefGoogle Scholar
  34. 34.
    Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347(12):911–920.  https://doi.org/10.1056/NEJMra020100 CrossRefPubMedGoogle Scholar
  35. 35.
    Bach JF (2018) The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol 18(2):105–120.  https://doi.org/10.1038/nri.2017.111 CrossRefPubMedGoogle Scholar
  36. 36.
    Patterson CC, Harjutsalo V, Rosenbauer J et al (2018) Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989-2013: a multicentre prospective registration study. Diabetologia.  https://doi.org/10.1007/s00125-018-4763-3
  37. 37.
    Hu C, Ding H, Zhang X et al (2013) Combination treatment with anti-CD20 and oral anti-CD3 prevents and reverses autoimmune diabetes. Diabetes 62(8):2849–2858.  https://doi.org/10.2337/db12-1175 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mamchak AA, Manenkova Y, Leconet W et al (2012) Preexisting autoantibodies predict efficacy of oral insulin to cure autoimmune diabetes in combination with anti-CD3. Diabetes 61(6):1490–1499.  https://doi.org/10.2337/db11-1304 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    You S, Piali L, Kuhn C et al (2013) Therapeutic use of a selective S1P1 receptor modulator ponesimod in autoimmune diabetes. PLoS One 8(10):e77296.  https://doi.org/10.1371/journal.pone.0077296 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Besançon A, Goncalves T, Valette F et al (2018) Oral histone deacetylase inhibitor synergises with T cell targeted immunotherapy to preserve beta cell metabolic function and induce stable remission of new-onset autoimmune diabetes in NOD mice. Diabetologia 61(2):389–398.  https://doi.org/10.1007/s00125-017-4459-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université Paris Descartes, Sorbonne Paris CitéParisFrance
  2. 2.INSERM U1151, INEM, Hôpital Necker-Enfants MaladesParisFrance
  3. 3.CNRS UMR 8253, Hôpital Necker-Enfants MaladesParisFrance

Personalised recommendations