Advertisement

Diabetologia

, Volume 62, Issue 3, pp 517–530 | Cite as

lncRNA H19 prevents endothelial–mesenchymal transition in diabetic retinopathy

  • Anu A. Thomas
  • Saumik Biswas
  • Biao Feng
  • Shali Chen
  • John Gonder
  • Subrata ChakrabartiEmail author
Article

Abstract

Aims/hypothesis

The pathophysiology of diabetic retinopathy is linked to hyperglycaemia and its effect on retinal microvascular tissues. The resulting endothelial injury changes the endothelial cell phenotype to acquire mesenchymal properties (i.e. endothelial–mesenchymal transition [EndMT]). Such changes can be regulated by epigenetic mechanisms, including long non-coding RNAs (lncRNAs). lncRNA H19 may influence EndMT through TGF-β. We investigated the role of H19 in regulating EndMT during diabetic retinopathy.

Methods

H19 was overexpressed or silenced in human retinal endothelial cells exposed to various glucose levels. The cells were examined for H19, endothelial and mesenchymal markers. We then expanded the study to retinal tissues in a mouse model of diabetic retinopathy and also examined vitreous humour samples from individuals with proliferative diabetic retinopathy.

Results

Expression of H19 was downregulated in high glucose conditions (25 mmol/l). H19 overexpression prevented glucose-induced EndMT. Such changes appear to involve TGF-β through a Smad-independent mechanism. Diabetes caused downregulation of retinal H19. Using H19 knockout mice, we demonstrated similar EndMT in the retina. Examination of vitreous humour from individuals with proliferative diabetic retinopathy also reinforced the downregulation of H19 in diabetes.

Conclusions/interpretation

We therefore concluded that H19 regulates EndMT in diabetic retinopathy through specific mechanisms.

Data availability

The results from our previous microarray can be found online using the GEO accession number GSE122189.

Keywords

Diabetic retinopathy Endothelial–mesenchymal transition H19 TGF-β 

Abbreviations

ECM

Extracellular matrix

EMT

Epithelial–mesenchymal transition

EndMT

Endothelial–mesenchymal transition

ERK

Extracellular signal-regulated kinase

FISH

Fluorescence in situ hybridisation

FSP1

Fibroblast-specific protein 1

GEO

Gene Expression Omnibus

HG

High d-glucose (25 mmol/l) (experimental treatment)

HRECs

Human retinal microvascular endothelial cells

KO

Knockout

lncRNA

Long non-coding RNA

MAPK

Mitogen-activated protein kinase

miR

microRNA

NG

Normal d-glucose (5 mmol/l) (experimental treatment)

NIH

National Institutes of Health

PDR

Proliferative diabetic retinopathy

PI3K

Phosphatidylinositol-3-kinase

SM22

Smooth muscle 22

α-SMA

α-Smooth muscle actin

STZ

Streptozotocin

TGFβRII

TGF-β receptor II

VE-cad

Vascular endothelial cadherin

VEGF

Vascular endothelial growth factor

Notes

Acknowledgements

We sincerely thank K. Pfeifer and his team from the National Institutes of Health (NIH) Intramural Research Program, Bethesda, MD, USA, for providing us with H19∆exI mice. Parts of this study were presented in abstract form at the 2017 Canadian Society of Endocrinology and Metabolism/Diabetes Canada Professional Conference and Annual Meeting, Edmonton, AB, Canada, 1–4 November 2017.

Contribution statement

AAT, SB, BF, SChe, JG and SCha contributed to the study concept and design, performance of the experiments, data review and analysis, and writing and editing of the manuscript. All authors contributed to the critical revision of the manuscript and gave their final approval of the submitted version. SCha is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Funding

This work was supported by grants from the Heart and Stroke Foundation of Ontario (HSF-G-16-00012556) and the Canadian Diabetes Association (CDA-OG-3-07-2380-SC) awarded to SC.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2018_4797_MOESM1_ESM.pdf (2.5 mb)
ESM 1 (PDF 2.50 MB)

References

  1. 1.
    Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103(2):137–149.  https://doi.org/10.1016/j.diabres.2013.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diab 26(2):77–82.  https://doi.org/10.2337/diaclin.26.2.77 CrossRefGoogle Scholar
  3. 3.
    Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564.  https://doi.org/10.2337/dc11-1909 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wong TY, Cheung CM, Larsen M, Sharma S, Simó R (2016) Diabetic retinopathy. Nat Rev Dis Primers 2:1–16CrossRefGoogle Scholar
  5. 5.
    Balakumar P, Jindal S, Shah DI, Singh M (2007) Experimental models for vascular endothelial dysfunction. Trends Med Res 2:12–20CrossRefGoogle Scholar
  6. 6.
    Ceriello A (2010) Point: postprandial glucose levels are a clinically important treatment target. Diabetes Care 33(8):1905–1907.  https://doi.org/10.2337/dc10-0634 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hadi HAR, Suwaidi JA (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3(6):853–876PubMedPubMedCentralGoogle Scholar
  8. 8.
    Karsdal MA, Manon-Jensen T, Genovese F et al (2015) Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 308(10):G807–G830.  https://doi.org/10.1152/ajpgi.00447.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Investig 117(3):524–529.  https://doi.org/10.1172/JCI31487 CrossRefPubMedGoogle Scholar
  10. 10.
    Ho YY, Lagares D, Tager AM, Kapoor M (2014) Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol 10(7):390–402.  https://doi.org/10.1038/nrrheum.2014.53 CrossRefPubMedGoogle Scholar
  11. 11.
    Lin F, Wang N, Zhang T (2012) The role of endothelial-mesenchymal transition in development and pathological process. Life 64(9):717–723.  https://doi.org/10.1002/iub.1059 CrossRefPubMedGoogle Scholar
  12. 12.
    Ohta S, Suzuki K, Tachibana K, Tanaka H, Yamada G (2007) Cessation of gastrulation is mediated by suppression of epithelial-mesenchymal transition at the ventral ectodermal ridge. Development 134(24):4315–4324.  https://doi.org/10.1242/dev.008151 CrossRefPubMedGoogle Scholar
  13. 13.
    Cano A, Perez-Moreno MA, Rodrigo I et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76–83.  https://doi.org/10.1038/35000025 CrossRefGoogle Scholar
  14. 14.
    Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V (2012) Epithelial- and endothelial- to mesenchymal transition: from cardiovascular development to disease. Circulation 125(14):1795–1808.  https://doi.org/10.1161/CIRCULATIONAHA.111.040352 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Medici D, Potenta S, Kalluri R (2011) Transforming growth factor-훽2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad independent signaling. Biochem J 437(3):515–520.  https://doi.org/10.1042/BJ20101500 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81(1):145–166.  https://doi.org/10.1146/annurev-biochem-051410-092902 CrossRefPubMedGoogle Scholar
  17. 17.
    Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21.  https://doi.org/10.1038/nrg3606 CrossRefPubMedGoogle Scholar
  18. 18.
    Nagano T, Fraser P (2011) No-nonsense functions for longnoncoding RNAs. Cell 145(2):178–181.  https://doi.org/10.1016/j.cell.2011.03.014 CrossRefPubMedGoogle Scholar
  19. 19.
    Huarte M (2015) The emerging role of lncRNAS in cancer (2015). Nat Med 21(11):1253–1261.  https://doi.org/10.1038/nm.3981 CrossRefPubMedGoogle Scholar
  20. 20.
    Yuan JH, Yang F, Wang F et al (2014) A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25(5):666–681.  https://doi.org/10.1016/j.ccr.2014.03.010 CrossRefPubMedGoogle Scholar
  21. 21.
    Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted noncoding RNA in growth and development. Bioessays 32(6):473–480.  https://doi.org/10.1002/bies.200900170 CrossRefPubMedGoogle Scholar
  22. 22.
    Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 long non-coding RNA in cancer intiation, progression and metastasis-a proposed unifying theory. Mol Cancer 14:1–14CrossRefGoogle Scholar
  23. 23.
    Zhang L, Yang F, Yuan J et al (2013) Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis 34(3):577–586.  https://doi.org/10.1093/carcin/bgs381 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhuo C, Jiang R, Lin X, Shao M (2017) LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget 8(1):1429–1437.  https://doi.org/10.18632/oncotarget.13637 CrossRefPubMedGoogle Scholar
  25. 25.
    McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S (2011) MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes 60(4):1314–1323.  https://doi.org/10.2337/db10-1557 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cao Y, Feng B, Chen S, Chu Y, Chakrabarti S (2014) Mechanisms of endothelial to mesenchymal transition in the retina in diabetes. Invest Ophthalmol Vis Sci 55(11):7321–7331.  https://doi.org/10.1167/iovs.14-15167 CrossRefPubMedGoogle Scholar
  27. 27.
    Feng B, Cao Y, Chen S et al (2016) miR-200b mediates endothelial-to- mesenchymal transition in diabetic cardiomyopathy. Diabetes 65:1–12CrossRefGoogle Scholar
  28. 28.
    Zhu GH, Li R, Zeng Y, Zhou T, Xiong F, Zhu M (2018) MicroRNA-142-3p inhibits high-glucose-induced endothelial-to-mesenchymal transition through targeting TGF-β1/Smad pathway in primary human aortic endothelial cells. Int J Clin Exp Pathol 11:1208–1217Google Scholar
  29. 29.
    Srivastava M, Frolova E, Rottinghaus B et al (2003) Imprint control element-mediated secondary methylation imprints at the Igf2/H19 locus. J Biol Chem 278(8):5977–5983.  https://doi.org/10.1074/jbc.M208437200 CrossRefPubMedGoogle Scholar
  30. 30.
    Thomas AA, Feng B, Chakrabarti S (2017) ANRIL: a regulator of VEGF in diabetic retinopathy. Invest Ophthalmol Vis Sci 58(1):470–480.  https://doi.org/10.1167/iovs.16-20569 CrossRefPubMedGoogle Scholar
  31. 31.
    Khan ZA, Cukiernik M, Gonder JR, Chakrabarti S (2004) Oncofetal fibronectin in diabetic retinopathy. Investig Ophthalmol Vis Sci 45(1):287–295.  https://doi.org/10.1167/iovs.03-0540 CrossRefGoogle Scholar
  32. 32.
    Biswas S, Thomas AA, Chen S et al (2018) MALAT1: an epigenetic regulator of inflammation in diabetic retinopathy. Sci Rep 8:1–15CrossRefGoogle Scholar
  33. 33.
    Chang PY, Yang CM, Yang CH, Chen MS, Wang JY (2009) Pars plana vitrectomy for diabetic fibrovascular proliferation with and without internal limiting membrane peeling. Eye 23(4):960–965.  https://doi.org/10.1038/eye.2008.334 CrossRefPubMedGoogle Scholar
  34. 34.
    Angi M, Kalirai H, Coupland SE, Damato BE, Semeraro F, Romano MR (2012) Proteomic analyses of vitreous humor. Mediat Inflamm 2012:1–7.  https://doi.org/10.1155/2012/148039 CrossRefGoogle Scholar
  35. 35.
    Gordon AD, Biswas SS, Feng B, Chakrabarti S (2018) MALAT1: a regulator of inflammatory cytokines in diabetic retinopathy. Endocrinol Diabetes Metab 1:1–11CrossRefGoogle Scholar
  36. 36.
    Wu Y, Zuo Y, Chakrabarti R, Feng B, Chen S, Chakrbarti S (2010) ERK5 contributes to VEGF alteration in diabetic retinopathy. J Ophthalmol 2010:1–11Google Scholar
  37. 37.
    Wu L, Derynck R (2009) Essential role of TGF-ß signaling in glucose-induced cell hypertrophy. Dev Cell 17(1):35–48.  https://doi.org/10.1016/j.devcel.2009.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tang R, Li Q, Lv L et al (2010) Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc Diabetol 9:1–7Google Scholar
  39. 39.
    Feit-Leichman RA, Kinouchi R, Takeda M et al (2005) Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest Ophthalmol Vis Sci 46(11):4281–4287.  https://doi.org/10.1167/iovs.04-1361 CrossRefPubMedGoogle Scholar
  40. 40.
    Xu Q, Deng F, Qin Y et al (2016) Long non-coding RNA regulation of epithelial–mesenchymal transition in cancer metastasis. Cell Death Dis 7:1–10Google Scholar
  41. 41.
    Xiang Y, Zhang Y, Tang Y, Li Q (2017) MALAT1 modulates TGF-β1-induced endothelial-to-mesenchymal transition through downregulation of miR-145. Cell Physiol Biochem 42(1):357–372.  https://doi.org/10.1159/000477479 CrossRefPubMedGoogle Scholar
  42. 42.
    Neumann P, Jae N, Knau A et al (2018) The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun 9:1–12CrossRefGoogle Scholar
  43. 43.
    Liang WC, Fu WM, Wong CW et al (2015) The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as MiRNA sponges in colorectal cancer. Oncotarget 6(26):22513–22525.  https://doi.org/10.18632/oncotarget.4154 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bakker W, Eringa EC, Sipkema P, van Hinsbergh VWM (2009) Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 335(1):165–189.  https://doi.org/10.1007/s00441-008-0685-6 CrossRefPubMedGoogle Scholar
  45. 45.
    Popov D (2020) Endothelial cell dysfunction in hyperglycemia: phenotypic change, intracellular signaling modification, ultrastructural alteration, and potential clinical outcomes. In J Diabetes Mellitus 2:189–195CrossRefGoogle Scholar
  46. 46.
    Biswas S, Chakrabarti S (2017) Pathogenetic mechanisms in diabetic retinopathy: from molecules to cells to tissues. In: Kartha CC, Ramachandran S, Pillai RM (eds) Mechanisms of Vascular Defects in Diabetes Mellitus, Advances in Biochemistry in Health and Disease, 1st edn. Springer, Cham, pp 209–247Google Scholar
  47. 47.
    Zeisberg EM, Tarnavski O, Zeisberg M et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961.  https://doi.org/10.1038/nm1613 CrossRefPubMedGoogle Scholar
  48. 48.
    Abu El-Asrar AM (2016) Endothelial-to-mesenchymal transition contributes to the myofibroblast population in proliferative diabetic retinopathy. Saudi J Ophthamol 30(1):1–2.  https://doi.org/10.1016/j.sjopt.2016.01.005 CrossRefGoogle Scholar
  49. 49.
    Abu El-Asrar AM, Struyf S, Kangave D, Van Damme J (2006) Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Eur Cytokine Netw 17(3):155–165PubMedGoogle Scholar
  50. 50.
    Peng H, Li Y, Wang C et al (2016) ROCK1 induces endothelial-to-mesenchymal transition in glomeruli to aggravate albuminuria in diabetic nephropathy. Sci Rep 6:1–10CrossRefGoogle Scholar
  51. 51.
    Eisenberg LM, Markwald RR (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77(1):1–6.  https://doi.org/10.1161/01.RES.77.1.1 CrossRefPubMedGoogle Scholar
  52. 52.
    Yan XC, Cao J, Liang L et al (2016) miR-342-5p Is a Notch downstream molecule and regulates multiple angiogenic pathways including Notch, vascular endothelial growth factor and transforming growth factor signaling. J Am Heart Assoc 5:1–15Google Scholar
  53. 53.
    Pardali E, Sanchez-Duffhues G, Gomez-Puerto MC, Dijke P (2017) TGF-induced endothelial-mesenchymal transition in fibrotic diseases. Int J Mol Sci 18:1–22CrossRefGoogle Scholar
  54. 54.
    Biswas S, Thomas AA, Chakrabarti S (2018) LncRNAs: proverbial genomic junk or key epigenetic regulators during cardiac fibrosis in diabetes? Front Cardiovasc Med 2018:1–13Google Scholar
  55. 55.
    Xu X, Tan X, Hulshoff MS, Wilhelmi T, Zeisberg M, Zeisberg EM (2016) Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett 590(8):1222–1233.  https://doi.org/10.1002/1873-3468.12158 CrossRefPubMedGoogle Scholar
  56. 56.
    Xu X, Tan X, Tampe B et al (2015) Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res 105(3):279–291.  https://doi.org/10.1093/cvr/cvv015 CrossRefPubMedGoogle Scholar
  57. 57.
    Lewandowski SL, Janardhan HP, Trivedi CM (2015) Histone deacetylase 3 coordinates deacetylase-independent epigenetic silencing of transforming growth factor-β1 (TGF-β1) to orchestrate second heart field development. J Biol Chem 290(45):27067–27089.  https://doi.org/10.1074/jbc.M115.684753 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kim J (2018) MicroRNAs as critical regulators of the endothelial to mesenchymal transition in vascular biology. BMB Rep 51(2):65–72.  https://doi.org/10.5483/BMBRep.2018.51.2.011 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cruz-Solbes AS (2017) Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): role and implications in kidney fibrosis. Kidney Dev Disease 60:345–372CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anu A. Thomas
    • 1
  • Saumik Biswas
    • 1
  • Biao Feng
    • 1
  • Shali Chen
    • 1
  • John Gonder
    • 2
  • Subrata Chakrabarti
    • 1
    Email author
  1. 1.Department of Pathology and Laboratory MedicineWestern UniversityLondonCanada
  2. 2.Department of OphthalmologyWestern UniversityLondonCanada

Personalised recommendations