pp 1–10 | Cite as

Substrate metabolism, hormone and cytokine levels and adipose tissue signalling in individuals with type 1 diabetes after insulin withdrawal and subsequent insulin therapy to model the initiating steps of ketoacidosis

  • Thomas S. Voss
  • Mikkel H. Vendelbo
  • Ulla Kampmann
  • Steen B. Pedersen
  • Thomas S. Nielsen
  • Mogens Johannsen
  • Mads V. Svart
  • Niels Jessen
  • Niels Møller



Lack of insulin and infection/inflammation are the two most common causes of diabetic ketoacidosis (DKA). We used insulin withdrawal followed by insulin administration as a clinical model to define effects on substrate metabolism and to test whether increased levels of counter-regulatory hormones and cytokines and altered adipose tissue signalling participate in the early phases of DKA.


Nine individuals with type 1 diabetes, without complications, were randomly studied twice, in a crossover design, for 5 h followed by 2.5 h high-dose insulin clamp: (1) insulin-controlled euglycaemia (control) and (2) after 14 h of insulin withdrawal in a university hospital setting.


Insulin withdrawal increased levels of glucose (6.1 ± 0.5 vs 18.6 ± 0.5 mmol/l), NEFA, 3-OHB (127 ± 18 vs 1837 ± 298 μmol/l), glucagon, cortisol and growth hormone and decreased HCO3 and pH, without affecting catecholamine or cytokine levels. Whole-body energy expenditure, endogenous glucose production (1.55 ± 0.13 vs 2.70 ± 0.31 mg kg−1 min−1), glucose turnover, non-oxidative glucose disposal, lipid oxidation, palmitate flux (73 [range 39–104] vs 239 [151–474] μmol/min), protein oxidation and phenylalanine flux all increased, whereas glucose oxidation decreased. In adipose tissue, Ser473 phosphorylation of Akt and mRNA levels of G0S2 decreased, whereas CGI-58 (also known as ABHD5) mRNA increased. Protein levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase phosphorylations were unaltered. Insulin therapy decreased plasma glucose concentrations dramatically after insulin withdrawal, without any detectable effect on net forearm glucose uptake.


Release of counter-regulatory hormones and overall increased catabolism, including lipolysis, are prominent features of preacidotic ketosis induced by insulin withdrawal, and dampening of Akt insulin signalling and transcriptional modulation of ATGL activity are involved. The lack of any increase in net forearm glucose uptake during insulin therapy after insulin withdrawal indicates muscle insulin resistance.

Trial registration NCT02077348


This study was supported by Aarhus University and the KETO Study Group/Danish Agency for Science Technology and Innovation.


Adipose tissue Cytokines Hormones Insulin Ketoacidosis Lipolysis 



3-hydroxybutyrate (β-hydroxybutyrate)


Adipose triglyceride lipase


Comparative gene identification-58


Diabetic ketoacidosis


Endogenous glucose production


Forearm blood flow


Hormone-sensitive lipase




Non-oxidative glucose disposal


Oxidative glucose disposal


Protein kinase A



The authors thank the following people at Aarhus University Hospital, Denmark for their excellent technical assistance: A. Mengel, K. Nyborg Rasmussen, E. Søgaard Hornemann and K. Mathiassen, Medical Research Laboratory; H. Zibrandtsen, Research Laboratory for Biochemical Pathology; L. Pedersen, Department of Endocrinology and Internal Medicine.

Contribution statement

TSV recruited the participants, conducted the trial and performed the statistical analyses. TSV, MHV, UK, NJ and NM contributed to conception and design of the study. NM, NJ, MVS, MJ, SBP, TSN and TSV collected and interpreted the data. TSV and NM drafted the manuscript and all authors revised it critically and approved the final version to be published. NM is the guarantor of this work and, as such, takes responsibility for the integrity of the data and the accuracy of the data analyses.


This study was supported by Aarhus University and the KETO Study Group/Danish Agency for Science Technology and Innovation (grant no. 0603-00479 [to NM]).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2018_4785_MOESM1_ESM.pdf (119 kb)
ESM Methods (PDF 119 kb)


  1. 1.
    Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN (2009) Hyperglycemic crises in adult patients with diabetes. Diabetes Care 32(7):1335–1343. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Basu A, Close CF, Jenkins D, Krentz AJ, Nattrass M, Wright AD (1993) Persisting mortality in diabetic ketoacidosis. Diabet Med 10(3):282–284. CrossRefPubMedGoogle Scholar
  3. 3.
    Malone ML, Gennis V, Goodwin JS (1992) Characteristics of diabetic ketoacidosis in older versus younger adults. J Am Geriatr Soc 40(11):1100–1104. CrossRefPubMedGoogle Scholar
  4. 4.
    Randall L, Begovic J, Hudson M et al (2011) Recurrent diabetic ketoacidosis in inner-city minority patients: behavioral, socioeconomic, and psychosocial factors. Diabetes Care 34(9):1891–1896. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Muyer MT, Buntinx F, Mapatano MA, De Clerck M, Truyers C, Muls E (2010) Mortality of young patients with diabetes in Kinshasa, DR Congo. Diabet Med 27(4):405–411. CrossRefPubMedGoogle Scholar
  6. 6.
    Livingstone SJ, Levin D, Looker HC, Scottish Diabetes Research Network epidemiology group; Scottish Renal Registry et al (2015) Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010. JAMA 313(1):37–44. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Umpierrez G, Korytkowski M (2016) Diabetic emergencies - ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nat Rev Endocrinol 12(4):222–232. CrossRefPubMedGoogle Scholar
  8. 8.
    Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE (2004) Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes 53(8):2079–2086. CrossRefPubMedGoogle Scholar
  9. 9.
    Miles JM, Rizza RA, Haymond MW, Gerich JE (1980) Effects of acute insulin deficiency on glucose and ketone body turnover in man: evidence for the primacy of overproduction of glucose and ketone bodies in the genesis of diabetic ketoacidosis. Diabetes 29(11):926–930. CrossRefPubMedGoogle Scholar
  10. 10.
    Miles JM, Haymond MW, Nissen SL, Gerich JE (1983) Effects of free fatty acid availability, glucagon excess, and insulin deficiency on ketone body production in postabsorptive man. J Clin Invest 71(6):1554–1561. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moller N, Jensen MD, Rizza RA, Andrews JC, Nair KS (2006) Renal amino acid, fat and glucose metabolism in type 1 diabetic and non-diabetic humans: effects of acute insulin withdrawal. Diabetologia 49(8):1901–1908. CrossRefPubMedGoogle Scholar
  12. 12.
    Leslie P, Jung RT, Isles TE, Baty J, Newton RW, Illingworth P (1986) Effect of optimal glycaemic control with continuous subcutaneous insulin infusion on energy expenditure in type I diabetes mellitus. Br Med J (Clin Res Ed) 293(6555):1121–1126. CrossRefGoogle Scholar
  13. 13.
    Karakelides H, Asmann YW, Bigelow ML et al (2007) Effect of insulin deprivation on muscle mitochondrial ATP production and gene transcript levels in type 1 diabetic subjects. Diabetes 56(11):2683–2689. CrossRefPubMedGoogle Scholar
  14. 14.
    Svart M, Kampmann U, Voss T et al (2016) Combined insulin deficiency and endotoxin exposure stimulate lipid mobilization and alter adipose tissue signaling in an experimental model of ketoacidosis in subjects with type 1 diabetes: a randomized controlled crossover trial. Diabetes 65(5):1380–1386. CrossRefPubMedGoogle Scholar
  15. 15.
    Nielsen TS, Vendelbo MH, Jessen N et al (2011) Fasting, but not exercise, increases adipose triglyceride lipase (ATGL) protein and reduces G(0)/G(1) switch gene 2 (G0S2) protein and mRNA content in human adipose tissue. J Clin Endocrinol Metab 96(8):E1293–E1297. CrossRefPubMedGoogle Scholar
  16. 16.
    Gilda JE, Gomes AV (2013) Stain-free total protein staining is a superior loading control to beta-actin for Western blots. Anal Biochem 440(2):186–188. CrossRefPubMedGoogle Scholar
  17. 17.
    Cooper KE, Edholm OG, Mottram RF (1955) The blood flow in skin and muscle of the human forearm. J Physiol 128(2):258–267. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Whitney RJ (1953) The measurement of volume changes in human limbs. J Physiol 121(1):1–27. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Steele R (1959) Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 82:420–430CrossRefPubMedGoogle Scholar
  20. 20.
    Moller N, Jorgensen JO, Alberti KG, Flyvbjerg A, Schmitz O (1990) Short-term effects of growth hormone on fuel oxidation and regional substrate metabolism in normal man. J Clin Endocrinol Metab 70(4):1179–1186. CrossRefPubMedGoogle Scholar
  21. 21.
    Thompson GN, Pacy PJ, Merritt H et al (1989) Rapid measurement of whole body and forearm protein turnover using a [2H5]phenylalanine model. Am J Phys 256:E631–E639Google Scholar
  22. 22.
    Ferrannini E (1988) The theoretical bases of indirect calorimetry: a review. Metabolism 37(3):287–301. CrossRefPubMedGoogle Scholar
  23. 23.
    Orskov L, Bak JF, Abildgard N et al (1996) Inhibition of muscle glycogen synthase activity and non-oxidative glucose disposal during hypoglycaemia in normal man. Diabetologia 39(2):226–234. CrossRefPubMedGoogle Scholar
  24. 24.
    Sorensen LK, Rittig NF, Holmquist EF et al (2013) Simultaneous determination of β-hydroxybutyrate and β-hydroxy-β-methylbutyrate in human whole blood using hydrophilic interaction liquid chromatography electrospray tandem mass spectrometry. Clin Biochem 46(18):1877–1883. CrossRefPubMedGoogle Scholar
  25. 25.
    Svart MV, Rittig N, Kampmann U, Voss TS, Møller N, Jessen N (2017) Metabolic effects of insulin in a human model of ketoacidosis combining exposure to lipopolysaccharide and insulin deficiency: a randomised, controlled, crossoverstudy in individuals with type 1 diabetes. Diabetologia 60(7):1197–1206. CrossRefPubMedGoogle Scholar
  26. 26.
    Nielsen TS, Jessen N, Jorgensen JO, Moller N, Lund S (2014) Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 52(3):R199–R222. CrossRefPubMedGoogle Scholar
  27. 27.
    Senior B, Loridan L (1968) Direct regulatory effect of ketones on lipolysis and on glucose concentrations in man. Nature 219(5149):83–84. CrossRefPubMedGoogle Scholar
  28. 28.
    Liu C, Wu J, Zhu J et al (2009) Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J Biol Chem 284(5):2811–2822. CrossRefPubMedGoogle Scholar
  29. 29.
    Moller N, Jorgensen JO, Moller J et al (1990) Substrate metabolism during modest hyperinsulinemia in response to isolated hyperketonemia in insulin-dependent diabetic subjects. Metabolism 39(12):1309–1313. CrossRefPubMedGoogle Scholar
  30. 30.
    Edgerton DS, Kraft G, Smith M et al (2017) Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI Insight 2:e91863CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Edgerton DS, Ramnanan CJ, Grueter CA et al (2009) Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo. Diabetes 58(12):2766–2775. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Stevenson RW, Steiner KE, Davis MA et al (1987) Similar dose responsiveness of hepatic glycogenolysis and gluconeogenesis to glucagon in vivo. Diabetes 36(3):382–389. CrossRefPubMedGoogle Scholar
  33. 33.
    Vendelbo MH, Clasen BF, Treebak JT et al (2012) Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle. Am J Physiol Endocrinol Metab 302(2):E190–E200. CrossRefPubMedGoogle Scholar
  34. 34.
    Nair KS, Ford GC, Ekberg K et al (1995) Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients. J Clin Invest 95(6):2926–2937. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Unger RH (1985) Glucagon physiology and pathophysiology in the light of new advances. Diabetologia 28(8):574–578. CrossRefPubMedGoogle Scholar
  36. 36.
    Arvat E, Maccagno B, Ramunni J et al (2000) Interaction between glucagon and human corticotropin-releasing hormone or vasopressin on ACTH and cortisol secretion in humans. Eur J Endocrinol 143(1):99–104. CrossRefPubMedGoogle Scholar
  37. 37.
    Lim CT, Khoo B (2000) Normal physiology of ACTH and GH release in the hypothalamus and anterior pituitary in man. In: De Groot LJ, Chrousos G, Dungan K et al (eds) Endotext., Inc., South DartmouthGoogle Scholar
  38. 38.
    Moller N, Jorgensen JO (2009) Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 30(2):152–177. CrossRefPubMedGoogle Scholar
  39. 39.
    Rickels MR, Naji A, Teff KL (2006) Insulin sensitivity, glucose effectiveness, and free fatty acid dynamics after human islet transplantation for type 1 diabetes. J Clin Endocrinol Metab 91(6):2138–2144. CrossRefPubMedGoogle Scholar
  40. 40.
    Christiansen JJ, Djurhuus CB, Gravholt CH et al (2007) Effects of cortisol on carbohydrate, lipid, and protein metabolism: studies of acute cortisol withdrawal in adrenocortical failure. J Clin Endocrinol Metab 92(9):3553–3559. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thomas S. Voss
    • 1
    • 2
  • Mikkel H. Vendelbo
    • 3
  • Ulla Kampmann
    • 2
  • Steen B. Pedersen
    • 2
  • Thomas S. Nielsen
    • 4
  • Mogens Johannsen
    • 5
  • Mads V. Svart
    • 1
    • 2
  • Niels Jessen
    • 6
    • 7
  • Niels Møller
    • 1
    • 2
  1. 1.Medical Research LaboratoryAarhus UniversityAarhus CDenmark
  2. 2.Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
  3. 3.Department of Nuclear MedicineAarhus University HospitalAarhusDenmark
  4. 4.The Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Integrative Physiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  5. 5.Section for Forensic Chemistry, Department of Forensic MedicineAarhus UniversityAarhusDenmark
  6. 6.Research Laboratory for Biochemical Pathology and Department of BiomedicineAarhus UniversityAarhusDenmark
  7. 7.Department of Clinical PharmacologyAarhus University HospitalAarhusDenmark

Personalised recommendations