Type 2 diabetes mellitus, brain atrophy and cognitive decline in older people: a longitudinal study
Abstract
Aims/hypothesis
The aims of the study were to examine whether type 2 diabetes mellitus is associated with greater brain atrophy and cognitive decline, and whether brain atrophy mediates associations between type 2 diabetes and cognitive decline.
Methods
Participants without dementia aged 55–90 years from the Cognition and Diabetes in Older Tasmanians (CDOT) study underwent brain MRI (ventricular and total brain volume) and neuropsychological measures (global function and seven cognitive domains) at three time points over 4.6 years. Mixed models were used to examine longitudinal associations of type 2 diabetes with cognitive and MRI measures, adjusting for covariates. A test of mediation was used to determine whether brain atrophy explained associations between type 2 diabetes and cognitive decline.
Results
A total of 705 participants (diabetes: n = 348, mean age 68.2 years [SD 7.0]; no diabetes: n = 357, mean age 72.5 years [SD 7.1]) were available at baseline. Adjusting for age, sex, education and vascular risk factors, there were significant diabetes × time interactions for verbal memory (β −0.06; 95% CI −0.09, −0.02) and verbal fluency (β −0.03; 95% CI −0.06, −0.00). Although people with diabetes had lower brain (β −14.273; 95% CI −21.197, −6.580) and greater ventricular (β 2.672; 95% CI 0.152, 5.193) volumes at baseline, there were no significant diabetes × time interactions (p > 0.05) or evidence of mediation of the diabetes–cognition relationship by brain atrophy.
Conclusions/interpretation
In older community-dwelling people, type 2 diabetes is associated with decline in verbal memory and fluency over ~5 years. The effect of diabetes on brain atrophy may begin earlier (midlife).
Keywords
Brain atrophy Brain imaging Cognition Dementia Longitudinal study Type 2 diabetes mellitusAbbreviations
- DBP
Diastolic blood pressure
- SBP
Systolic blood pressure
- WMH
White matter hyperintensity
Notes
Acknowledgements
The results of this study have been presented in abstract form at the Alzheimer’s Association International Conference, London, 2017, and the Australian Dementia Forum, Melbourne, 2017.
Contribution statement
MLC drafted the manuscript and analysed the data. RB completed the image processing and analysis. MLC, RB, CM, WW, TP and VKS interpreted the data and revised the manuscript. WW assisted with the statistical analysis. VKS was responsible for the study concept and design. All authors approved the final version of the manuscript. MLC and VKS are the guarantors of this work.
Funding
This study was funded by the National Health and Medical Research Council (NHMRC) (project grant 403000 and 436797), Australia. MLC is funded by an NHMRC Boosting Dementia Research Leadership Fellowship (1135761). CM is funded by an NHMRC/ARC Dementia Early Career Fellowship (1109482). VKS is a recipient of NHMRC project grants (403000 and 436797) and an NHMRC Practitioner Fellowship (APP1137837). WW, RB and TP have no funding to declare.
Duality of interest
MLC, RB, CM, WW and VKS have no conflicts of interest to declare. TP is on the Genzyme advisory board on Fabry disease, and has received payment for lectures including service on speakers’ bureaus for Bayer, Boehringer Ingelheim, Pfizer and Genzyme.
Supplementary material
References
- 1.Alzheimer’s Disease International (2014) World Alzheimer report. Alzheimer’s Disease International, LondonGoogle Scholar
- 2.Cheng G, Huang C, Deng H, Wang H (2012) Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 42(5):484–491. https://doi.org/10.1111/j.1445-5994.2012.02758.x CrossRefPubMedGoogle Scholar
- 3.Tuligenga RH, Dugravot A, Tabak AG et al (2014) Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the Whitehall II cohort study. Lancet Diabetes Endocrinol 2(3):228–235. https://doi.org/10.1016/S2213-8587(13)70192-X CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Spauwen PJ, Kohler S, Verhey FR, Stehouwer CD, van Boxtel MP (2013) Effects of type 2 diabetes on 12-year cognitive change: results from the Maastricht aging study. Diabetes Care 36(6):1554–1561. https://doi.org/10.2337/dc12-0746 CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Rajan KB, Arvanitakis Z, Lynch EB et al (2016) Cognitive decline following incident and preexisting diabetes mellitus in a population sample. Neurology 87(16):1681–1687. https://doi.org/10.1212/WNL.0000000000003226 CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Rawlings AM, Sharrett AR, Schneider AL et al (2014) Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann Intern Med 161(11):785–793. https://doi.org/10.7326/M14-0737 CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Knopman DS, Mosley TH, Catellier DJ, Coker LH, Atherosclerosis Risk in Communities Study Brain MRI Study (2009) Fourteen-year longitudinal study of vascular risk factors, APOE genotype, and cognition: the ARIC MRI Study. Alzheimers Dement 5(3):207–214. https://doi.org/10.1016/j.jalz.2009.01.027 CrossRefPubMedGoogle Scholar
- 8.Yaffe K, Falvey C, Hamilton N et al (2012) Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch Neurol 69(9):1170–1175. https://doi.org/10.1001/archneurol.2012.1117 CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Nooyens AC, Baan CA, Spijkerman AM, Verschuren WM (2010) Type 2 diabetes and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study. Diabetes Care 33(9):1964–1969. https://doi.org/10.2337/dc09-2038 CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Wisse LE, de Bresser J, Geerlings MI et al (2014) Global brain atrophy but not hippocampal atrophy is related to type 2 diabetes. J Neurol Sci 344(1-2):32–36. https://doi.org/10.1016/j.jns.2014.06.008 CrossRefPubMedGoogle Scholar
- 11.Moran C, Phan TG, Chen J et al (2013) Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care 36(12):4036–4042. https://doi.org/10.2337/dc13-0143 CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Biessels GJ, Reijmer YD (2014) Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes 63(7):2244–2252. https://doi.org/10.2337/db14-0348 CrossRefPubMedGoogle Scholar
- 13.Roberts RO, Knopman DS, Przybelski SA et al (2014) Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology 82(13):1132–1141. https://doi.org/10.1212/WNL.0000000000000269 CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Williamson JD, Launer LJ, Bryan RN et al (2014) Cognitive function and brain structure in persons with type 2 diabetes mellitus after intensive lowering of blood pressure and lipid levels: a randomized clinical trial. JAMA Intern Med 174(3):324–333. https://doi.org/10.1001/jamainternmed.2013.13656 CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Launer LJ, Miller ME, Williamson JD et al (2011) Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol 10(11):969–977. https://doi.org/10.1016/S1474-4422(11)70188-0 CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Kooistra M, Geerlings MI, Mali WP et al (2013) Diabetes mellitus and progression of vascular brain lesions and brain atrophy in patients with symptomatic atherosclerotic disease. The SMART-MR study. J Neurol Sci 332(1-2):69–74. https://doi.org/10.1016/j.jns.2013.06.019 CrossRefPubMedGoogle Scholar
- 17.de Bresser J, Tiehuis AM, van den Berg E et al (2010) Progression of cerebral atrophy and white matter hyperintensities in patients with type 2 diabetes. Diabetes Care 33(6):1309–1314. https://doi.org/10.2337/dc09-1923 CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Debette S, Seshadri S, Beiser A et al (2011) Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology 77(5):461–468. https://doi.org/10.1212/WNL.0b013e318227b227 CrossRefPubMedPubMedCentralGoogle Scholar
- 19.van Elderen SG, de Roos A, de Craen AJ et al (2010) Progression of brain atrophy and cognitive decline in diabetes mellitus: a 3-year follow-up. Neurology 75(11):997–1002. https://doi.org/10.1212/WNL.0b013e3181f25f06 CrossRefPubMedGoogle Scholar
- 20.Espeland MA, Bryan RN, Goveas JS et al (2013) Influence of type 2 diabetes on brain volumes and changes in brain volumes: results from the Women's Health Initiative magnetic resonance imaging studies. Diabetes Care 36(1):90–97. https://doi.org/10.2337/dc12-0555 CrossRefPubMedGoogle Scholar
- 21.Lezak M (1995) Neuropsychological assessment. Oxford University Press, New YorkGoogle Scholar
- 22.Spreen O, Strauss E (1998) A compendium of neuropsychological tests. Administration, norms, and commentary. Oxford University Press, New YorkGoogle Scholar
- 23.Weschler D (1997) Weschler Adult Intelligence Scale. Psychological Corporation, New YorkGoogle Scholar
- 24.Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61(4):1402–1418. https://doi.org/10.1016/j.neuroimage.2012.02.084 CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Choi P, Ren M, Phan TG et al (2012) Silent infarcts and cerebral microbleeds modify the associations of white matter lesions with gait and postural stability: population-based study. Stroke 43(6):1505–1510. https://doi.org/10.1161/STROKEAHA.111.647271 CrossRefPubMedGoogle Scholar
- 26.Lee KJ, Roberts G, Doyle LW, Anderson PJ, Carlin JB (2016) Multiple imputation for missing data in a longitudinal cohort study: a tutorial based on a detailed case study involving imputation of missing outcome data. Int J Soc Res Methodol 19(5):575–591. https://doi.org/10.1080/13645579.2015.1126486 CrossRefGoogle Scholar
- 27.Enders CK (2010) Applied missing data analysis. Guilford Press, New YorkGoogle Scholar
- 28.Muthén LK, Muthén BO (1998-2018) Mplus user’s guide. Available from www.statmodel.com/ugexcerpts.shtml. Accessed 14 May 2018
- 29.Asparouhov T, Muthén BO (2010) Multiple imputation with Mplus. Available from www.statmodel.com/download/Imputations7.pdf. Accessed 14 May 2018
- 30.Graham J (2012) Missing data. Springer, New York, https://doi.org/10.1007/978-1-4614-4018-5
- 31.Schafer JL, Olsen MK (1998) Multiple imputation for multivariate missing-data problems: a data analyst’s perspective. Multivar Behav Res 33(4):545–571. https://doi.org/10.1207/s15327906mbr3304_5 CrossRefGoogle Scholar
- 32.Rubin DB (1987) Multiple imputation for nonresponse in surveys. Wiley, New York. https://doi.org/10.1002/9780470316696 CrossRefGoogle Scholar
- 33.Tomlin A, Sinclair A (2016) The influence of cognition on self-management of type 2 diabetes in older people. Psychol Res Behav Manag 9:7–20. https://doi.org/10.2147/PRBM.S36238 CrossRefPubMedPubMedCentralGoogle Scholar
- 34.Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 61(5):661–666. https://doi.org/10.1001/archneur.61.5.661 CrossRefPubMedGoogle Scholar
- 35.Maggi S, Limongi F, Noale M et al (2009) Diabetes as a risk factor for cognitive decline in older patients. Dement Geriatr Cogn Disord 27(1):24–33. https://doi.org/10.1159/000183842 CrossRefPubMedGoogle Scholar
- 36.Mayeda ER, Haan MN, Yaffe K, Kanaya AM, Neuhaus J (2015) Does type 2 diabetes increase rate of cognitive decline in older Mexican Americans? Alzheimer Dis Assoc Disord 29(3):206–212. https://doi.org/10.1097/WAD.0000000000000083 CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Pappas C, Andel R, Infurna FJ, Seetharaman S (2017) Glycated haemoglobin (HbA1c), diabetes and trajectories of change in episodic memory performance. J Epidemiol Community Health 71(2):115–120. https://doi.org/10.1136/jech-2016-207588 CrossRefPubMedGoogle Scholar
- 38.Mayeda ER, Haan MN, Neuhaus J et al (2014) Type 2 diabetes and cognitive decline over 14 years in middle-aged African Americans and whites: the ARIC Brain MRI Study. Neuroepidemiology 43(3-4):220–227. https://doi.org/10.1159/000366506 CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Okereke OI, Kang JH, Cook NR et al (2008) Type 2 diabetes mellitus and cognitive decline in two large cohorts of community-dwelling older adults. J Am Geriatr Soc 56(6):1028–1036. https://doi.org/10.1111/j.1532-5415.2008.01686.x CrossRefPubMedGoogle Scholar
- 40.Bangen KJ, Gu Y, Gross AL et al (2015) Relationship between type 2 diabetes mellitus and cognitive change in a multiethnic elderly cohort. J Am Geriatr Soc 63(6):1075–1083. https://doi.org/10.1111/jgs.13441 CrossRefPubMedPubMedCentralGoogle Scholar
- 41.van den Berg E, Reijmer YD, de Bresser J et al (2010) A 4 year follow-up study of cognitive functioning in patients with type 2 diabetes mellitus. Diabetologia 53(1):58–65. https://doi.org/10.1007/s00125-009-1571-9 CrossRefPubMedGoogle Scholar